精英家教网 > 初中数学 > 题目详情
(2012•鞍山三模)如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n.方程x2-mx+n=0的两根倒数和为-4.
(1)求n的值;
(2)求此抛物线的解析式;
(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF为直径的圆恰好与x轴相切?若存在,求出此圆的半径;若不存在,说明理由.
分析:(1)由于AB是圆的直径,根据相交弦定理的推论可得OC2=OA•OB,若设A(x1,0),B(x2,0),那么n2=-x1x2,根据根与系数的关系知x1x2=n,联立两式即可求得n的值.
(2)根据韦达定理可求得方程的两根之和与两根之积,即可表示出它们的倒数和,已知了倒数和为-4,即可求得m的值,由此确定抛物线的解析式.
(3)可假设存在这样的点E、F,设以线段EF为直径的圆的半径为|r|,那么可用半径|r|表示出E,F两点的坐标,然后根据E,F在抛物线上,将E,F的坐标代入抛物线的解析式中,可得出关于|r|的方程,如果方程无解则说明不存在这样的E,F点,如果方程有解,可用得出的r的值求出E,F两点的坐标.
解答:解:(1)由题意,设A(x1,0),B(x2,0),C(0,n)
∵OA=-x1,OB=x2,又CO⊥AB,
∴CO2=AO•OB,
即n2=-x1x2
又∵x1,x2是方程x2-mx+n=0的两根,
∴x1+x2=n,
∴n2=-n,
∴n1=-1,n2=0(舍去),
∴n=-1.

(2)∵x1,x2是方程x2-mx+n=0的两根,
∴x1+x2=m.
又∵n=-1,
∴x1x2=-1,
1
x1
+
1
x2
=
x1+x2
x1x2
=
m
-1
=-4,
∴m=4,
∴所求抛物线的关系式为y=x2-4x-1.
(3)存在,设满足条件的圆的半径为|r|,
∵y=x2-4x-1.
=(x-2)2-5,
抛物线对称轴为x=2,
根据圆和抛物线的对称性可知:圆心在抛物线的对称轴上,
∴E的坐标为(2+|r|,r),
∵点E在抛物线上,
∴r=(2+|r|-2)2-5,
即:r2-r-5=0,
解得:r=
1+
21
2
1-
21
2

∴存在此线段EF为直径的圆恰好与x轴相切,此圆的半径为
1+
21
2
21
-1
2
点评:本题着重考查了待定系数法求二次函数解析式、根与系数的关系、抛物线与圆的对称性等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•鞍山三模)下列命题中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山三模)已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山三模)在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山三模)(1)9
45
÷3
1
5
×
3
2
2
2
3

(2)
1
3
+
2
+
1
2
+1
-
1
3
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,P在BA的延长线上,且∠POC=∠PCE,PC是⊙O的切线吗?为什么?

查看答案和解析>>

同步练习册答案