精英家教网 > 初中数学 > 题目详情
如图1,已知直线y=
2
5
x+2与x轴交于点A,交y轴于C、抛物线y=ax2+4ax+b经过A、C两点,抛物线交x轴于另一点B.
(1)求抛物线的解析式;
(2)点Q在抛物线上,且有△AQC和△BQC面积相等,求点Q的坐标;
(3)如图2,点P为△AOC外接圆上
ACO
的中点,直线PC交x轴于D,∠EDF=∠ACO.当∠EDF绕D旋转时,DE交AC于M,DF交y轴负半轴于N、问CN-CM的值是否发生变化?若不变,求出其值;若变化,求出变化范围.
精英家教网精英家教网
分析:(1)根据直线AC的解析式可求得A、C的坐标,将它们代入抛物线的解析式中,即可求得待定系数的值,从而确定该抛物线的解析式.
(2)此题应分作两种情况考虑:
①当Q点在AC段的抛物线图象上时,由于△BCQ、△ACQ等底,若它们的面积相等,那么它们的CQ边上的高必相等,即CQ∥AB,根据抛物线的对称轴和点C的坐标即可得到点Q的坐标;
②当Q在AC段以为的抛物线图象上时,设直线CQ与x轴的交点为R,那么△ACQ、△BCQ的面积分别可表示为:
1
2
AR•|yC-yQ|和
1
2
BR•|yC-yQ|,因此两个三角形可看作是等高的三角形,因此“底边”AR=BR,即R是AB的中点,易得R的坐标,可求出直线CR的解析式,联立抛物线的解析式,即可求得点Q的坐标.
(3)过点D作∠NDR=∠PDE,交y轴于R,那么∠RDC=∠NDM=∠ACO;由于P是△AOC外接圆⊙S上
ACO
的中点,根据垂径定理可知,SR所在直线必平行于y轴,那么∠PSC=∠ACO=∠RDC,易证得∠SPC=∠DCR,那么△SPC∽△DCR,由于△PSC是等腰三角形,那么△DCR也是等腰三角形,即CD=DR,易证得∠CMD=∠RND,则可证得△DCM≌△DRN,可得CM=RN,即CN-CM=CR=2OC,由此得解.
解答:解:(1)由直线AC的解析式可得:A(-5,0),C(0,2);
代入抛物线的解析式中可得:
25a-20a+b=0
b=2

解得
a=-
2
5
b=2
精英家教网
故抛物线的解析式为:y=-
2
5
x2-
8
5
x+2.

(2)易知B(1,0);
①当Q在AC段的抛物线上时,
△ACQ和△BCQ同底,若它们的面积相等,则A、B到直线CQ得距离相等,即CQ∥AB;
由于抛物线的对称轴为x=-2,
故Q(-4,2);
②当Q在线段AC外的直线上时,
△ACQ的面积为:
1
2
AL•|yC-yQ|,精英家教网
△BCQ的面积为:
1
2
BL•|yC-yQ|,
若两个三角形的面积相等,
那么AL=BL,
即L是线段AB的中点,即L(-2,0);
易知直线CL的解析式为:y=x+2,联立抛物线的解析式得:
y=-
2
5
x2-
8
5
x+2
y=x+2

解得
x=0
y=2
x=-
13
2
y=-
9
2

故Q(-
13
2
,-
9
2
);
综上所述,存在两个符合条件的点Q,且坐标为:Q(-4,2)或(-
13
2
,-
9
2
).

(3)如图,设△AOC的外接圆圆心为S;
作∠NDR=∠PDE,交y轴于R;
则∠PDR=∠MDN=∠ACO;
由于P点是
ACO
的中点,由垂径定理知SP必平行于y轴,得:
∠PSC=∠ACO=∠CDR,∠SPC=∠RCD;
则△SCP∽△DCR,
所以△CDR也是等腰三角形;
即CD=DR,OC=OR;
∵∠PCS=∠DRC,
∴∠DCM=∠DRN,
又∵∠CDM=∠NDR,CD=DR,
∴△DCM≌△DRN,
得CM=RN,
故CN-CM=CR=2OC;
所以CN-CM的值不变,恒为2OC,即4.
点评:此题主要考查了二次函数解析式的确定、图形面积的求法、函数图象交点坐标的求法、全等三角形的判定和性质等重要知识点;(2)题中,由于点Q的位置不确定,所以一定要将问题考虑全面,不要漏解;(3)题中,能够正确的构建出全等三角形是解决问题的关键,此题涉及的知识点较多,难度很大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图1,已知直线:y=
3
3
x+
3
与直角坐标系xOy的x轴交于点A,与y轴交于点B,点M为x轴正半轴上一点,以点M为圆心的⊙M与直线AB相切于B点,交x轴于C、D两点,与y轴交于另一点E.
(1)求圆心M的坐标;
(2)如图2,连接BM延长交⊙M于F,点N为
CF
上任一点,连DN交BF于Q,连FN并延长交x轴于点P.则CP与MQ有何数量关系?证明你的结论;
(3)如图3,连接BM延长交⊙M于F,点N为
CF
上一动点,NH⊥x轴于H,NG⊥BF于G,连接GH,当N点运动时,下列两个结论:①NG+NH为定值;②GH的长度不变;其中只有一个是正确的,请你选择正确的结论加以证明,并求出其值?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线l的解析式为y=
43
x+4
,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.
(1)直接写出A、B两点的坐标;
(2)设点C、D的运动时间是t秒(t>0).
①用含t的代数式分别表示线段AD和AC的长度;
②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能,求t的值;若不能,请说明理由.(可利用备用图解题)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线y=kx与抛物线y=-
4
27
x2+
22
3
交于点A(3,6).
(1)求k的值;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意,解答问题:

(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(-2,-1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下面证明:

(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b
证明:∵a⊥c  (已知)
∴∠1=
∠2
∠2
(垂直定义)
∵b∥c (已知)
∴∠1=∠2  (
两直线平行,同位角相等
两直线平行,同位角相等

∴∠2=∠1=90° (
等量代换
等量代换

∴a⊥b      (
垂直的定义
垂直的定义

(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE
证明:∵AB∥CD (已知)
∴∠B=
∠C
∠C
两直线平行,内错角相等
两直线平行,内错角相等

∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (
等量代换
等量代换

∴CB∥DE   (
同旁内角互补,两直线平行
同旁内角互补,两直线平行

查看答案和解析>>

同步练习册答案