精英家教网 > 初中数学 > 题目详情
(2012•成都)函数y=
1
x-2
中,自变量x的取值范围是(  )
分析:根据分母不等于0列式计算即可得解.
解答:解:根据题意得,x-2≠0,
解得x≠2.
故选C.
点评:本题考查了函数自变量的取值范围,用到的知识点为:分式有意义,分母不为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•成都模拟)设函数y=x2-(2k+1)x+2k-4的图象如图所示,它与x轴交于A,B两点,且线段OA与OB的长度之比为1:3,则k=
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,一次函数y=-2x+b(b为常数)的图象与反比例函数y=
kx
(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(-1,4).
(1)分别求出反比例函数及一次函数的表达式;
(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,O)的概率是
3
7
3
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,一次函数y=
5
4
x+m
(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究
M1P•M2P
M1M2
是否为定值,并写出探究过程.

查看答案和解析>>

同步练习册答案