精英家教网 > 初中数学 > 题目详情
已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则=  

试题分析:延长MnPn﹣1交M1P1于N,先根据反比例函数上点的坐标特点易求得M1的坐标为(1,1);Mn的坐标为(n,);然后根据三角形的面积公式得=P1M1×P1M2+M2P2×P2M3+…+Mn﹣1Pn﹣1×Pn﹣1Mn,而P1M2=P2M3=…=Pn﹣1Mn=1,则=(M1P1+M2P2+…+Mn﹣1Pn﹣1),经过平移得到面积的和为M1N,于是面积和等于(1﹣),然后通分即可.
解:延长MnPn﹣1交M1P1于N,如图,

∵当x=1时,y=1,
∴M1的坐标为(1,1);
∵当x=n时,y=
∴Mn的坐标为(n,);
=P1M1×P1M2+M2P2×P2M3+…+Mn﹣1Pn﹣1×Pn﹣1Mn=(M1P1+M2P2+…+Mn﹣1Pn﹣1
=M1N
=(1﹣
=
故答案为
点评:本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足反比例函数的解析式;掌握三角形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,直线y=k1x+b与反比例函数y= 的图象相交于A,B两点,已知A(1,4).

(1)求反比例函数的解析式;
(2)直线AB交x轴于点C,连接OA,当△AOC的面积为6时,求直线AB的解析式;
(3)直接写出不等式组 的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S?ABCD=24,则k1=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

方程x2+4x-1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程的实根一定在( )范围内  
A. B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知3x=,y=x2a﹣1是反比例函数,则xa的值为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正比例函数y=kx与反比例函数y=相交于点A(1,b)、点B(c,﹣2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法,利用两交点在坐标系中位置的特殊性,可以试试.请结合他们的讨论求出k+a=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,…,以此类推.则S10的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值(  )
A.等于2B.等于C.等于D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为(  )
A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)

查看答案和解析>>

同步练习册答案