精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
解:(1)证明:∵∠QAP=∠BAD=90°,∴∠QAB=∠PAD。
又∵∠ABQ=∠ADP=90°,∴△ADP∽△ABQ。
(2)∵△ADP∽△ABQ,∴,即。∴QB=2x。
∵DP=x,CD=AB=20,∴PC=CD﹣DP=20﹣x.
如图,过点M作MN⊥QC于点N,

∵MN⊥QC,CD⊥QC,点M为PQ中点,
∴点N为QC中点,MN为中位线,


在Rt△BMN中,由勾股定理得
∴y与x的函数关系式为:(0<x<20)。

∴当x=8即DP=8时,y取得最小值为45,BM的最小值为
(3)设PQ与AB交于点E。
如图,点M落在矩形ABCD外部,须满足的条件是BE>MN。
∵△ADP∽△ABQ,∴,即,解得
∵AB∥CD,∴△QBE∽△QCP。
,即,解得
∵MN为中位线,∴
∵BE>MN,∴,解得
∴当点M落在矩形ABCD外部时,a的取值范围为:
(1)由对应两角相等,证明两个三角形相似。
(2)如图所示,过点M作MN⊥QC于点N,由此构造直角三角形BMN,利用勾股定理求出y与x的函数关系式,这是一个二次函数,求出其最小值。
(3)如图所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8,
(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;

(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当 PQC三点恰好构成黄金圆时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是

A.       B.      C.      D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为【   】
A.5cm B.6cm C.7cm D.8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在?ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是【   】
A.1:2B.1:3C.1:4D.1:5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则SAEF:S四边形BDEF
A.3:4B.1:2C.2:3D.1:3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,点D在AB上,请再添加一个适当的条件,使△ADC∽△ACB,那么要添加的条件是                   。(只需填写满足要求的一个条件即可)。

查看答案和解析>>

同步练习册答案