精英家教网 > 初中数学 > 题目详情
如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
(1)找出当AP+BP能得到最小值时,点P的位置,并证明
(2)求出AP+BP最小值.
分析:(1)本题是要在MN上找一点P,使PA+PB的值最小,根据“两点之间线段最短”,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P;
(2)可证△OA′B是等腰直角三角形,从而得出结果.
解答:(1)证明:过A作AA′⊥MN于E,连接BA′.

∵MN过圆心O,
∴AE=EA′,
∴AP=PA′,即AP+BP=PA′+BP,
根据两点间线段最短,当A′,P,B三点共线时,PA′+BP=BA',
AP+BP此时为最小值,
∴P位于A′B与MN的交点处;
(2)解:∵点A是半圆上的一个三等分点,
∴∠AON=∠A'ON=60°,
∵点B是弧AN的中点,
AB
=
BN

∴∠BON=30°,
∴∠BOA'=∠A'ON+∠BON=90°,
∵OB=OA=1,
∴BA′=
2
,即AP+BP最小值为
2
点评:本题考查轴对称-最短路径问题,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
【小题1】(1)找出当AP+BP能得到最小值时,点P的位置,并证明
【小题2】(2)求出AP+BP最小值

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京市第六十六中学九年级上学期期中考试数学卷 题型:解答题

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
【小题1】(1)找出当AP+BP能得到最小值时,点P的位置,并证明
【小题2】(2)求出AP+BP最小值

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图,点A是半圆上的三等分点,B是的中点,P是直径MN上一动点。⊙O的半径为1,问P在直线MN上什么位置时,AP+BP的值最小?并求出AP+BP的最小值。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市第六十六中学九年级(上)期中数学试卷(解析版) 题型:解答题

如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
(1)找出当AP+BP能得到最小值时,点P的位置,并证明
(2)求出AP+BP最小值.

查看答案和解析>>

同步练习册答案