精英家教网 > 初中数学 > 题目详情
若式子
x+2
1
x-2
都有意义,则x的取值范围是(  )
A.x≥0B.-2≤x≤2C.x≥-2D.x>2
由题意得:
x+2≥0①
x-2>0②

解①得:x≥-2,
解②得:x>2,
∴x>2.
故选:D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若式子
x+2
1
x-2
都有意义,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

从A、B量水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各调查水14万吨,从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨•千米)尽可能小.
(1)设从A水库调往甲地的水量为x万吨,请你在下面表格空白处填上适当的数或式子.
地区
水库
总计
A x
14-x
14-x
14
B
15-x
15-x
x-1
x-1
14
总计 15 13 28
(2)请你注意:影响水的调运量的因素有两个,即水量(单位:万吨)和运程(单位:千米),水的调运量是两者的乘积(单位:万吨•千米).因此,从A到甲地有个调运量,从A到乙地也有个调运量:从B地….设水的调运总量为y万吨•千米,则y与x的函数关系式y=
10x+1270
10x+1270
(要求最简形式)
(3)对于(2)中y与x的函数关系式,若求自变量的取值范围,应该列不等式组:
x≥0
15-x≥0
14-x≥0
x-1≥0
x≥0
15-x≥0
14-x≥0
x-1≥0
,解这个不等式组得:
1≤x≤14,
1≤x≤14,
,据此,在给出的坐标系中画出这个函数的图象(不要求写作法).
(4)结合函数解析式及其图象说明水的最佳调运方案,水的最小调运总量为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

把2013个正整数1,2,3,4,…,2013按如图方式排列成一个表.
(1)如图,用一正方形方框任意框住4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是
x+1
x+1
x+7
x+7
x+8
x+8

(2)当(1)中被框住的4个数之和等于416时,x的值为多少?
(3)如(1)中方式,能否框住这样的4个数,它们的和等于2844?若能,则求出x的值;若不能,则说明理由.
(4)从左到右,第1到第7列各列数之和分别记为a1,a2,a3,a4,a5,a6,a7,则这7个数中,最大数与最小数之差等于
1726
1726
(直接填出结果,不写计算过程)

查看答案和解析>>

同步练习册答案