精英家教网 > 初中数学 > 题目详情
(2004•日照)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.
(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)求sin∠PCA的值.

【答案】分析:(1)要证PC是⊙O的切线,只要证∠PCO=90°即可;
(2)相似三角形的性质及勾股定理求出⊙O的半径;
(3)求出CE的长,BE的长,BC的长,切线的性质知∠PCA=∠B,求出Sin∠B,即为所求.
解答:(1)证明:∵弦CD⊥AB于点E,
∴∠CEP=90°.
∵∠POC=∠PCE,∠P=∠P,
∴△POC∽△PCE,
∴∠PCO=∠CEP=90°.
∴PC是⊙O的切线.

(2)解:∵OE:EA=1:2,
∴OE:OC=,OC:OP=
∵PA=6,
∴⊙O的半径=3.

(3)解:连接BC;
∵圆的半径为3,OE:EA=1:2,
∴OE=1,
∴EC=2,BE=4;
∴BC=2
∵∠PCA=∠B,
∴sin∠B=sin∠PCA==
点评:本题综合考查了相似三角形的性质,勾股定理及切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源:2004年山东省日照市中考数学试卷(解析版) 题型:选择题

(2004•日照)如图,已知直线AB∥CD,当点E直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是( )

A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDE
B.∠BED=∠ABE-∠CDE
C.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDE
D.∠BED=∠CDE-∠ABE

查看答案和解析>>

科目:初中数学 来源:2004年山东省日照市中考数学试卷(解析版) 题型:选择题

(2004•日照)如图,P是直径AB上的一点,且PA=2,PB=6,CD是过点P的弦,那么下列PC的长度,符合题意的是( )
A.PC=1;PD=12
B.PC=3;PD=5
C.PC=7;PD=
D.PC=;PD=

查看答案和解析>>

科目:初中数学 来源:2004年山东省日照市中考数学试卷(解析版) 题型:选择题

(2004•日照)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOB+∠DOC的值( )

A.小于180°或等于180°
B.等于180°
C.大于180°
D.大于180°或等于180°

查看答案和解析>>

科目:初中数学 来源:2003年湖南省长沙市龙江初中中考数学试卷(解析版) 题型:解答题

(2004•日照)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.
(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)求sin∠PCA的值.

查看答案和解析>>

同步练习册答案