精英家教网 > 初中数学 > 题目详情
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,墙的最大可用长度为8米,设花圃的宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式;
(2)求自变量的取值范围;
(3)当x取何值时所围成的花圃面积最大,最大值是多少?
分析:(1)求出S=AB×BC代入即可;
(2)利用0<24-4x≤8进而解出即可;
(3)把解析式化成顶点式,再利用二次函数增减性即可得到答案.
解答:解:(1)设花圃的宽AB为x米,则BC=(24-4x)m,
根据题意得出:S=x(24-4x)=-4x2+24x;

(2)∵墙的可用长度为8米
∴0<24-4x≤8
解得:4≤x<6;

(3)S=-4x2+24x=-4(x2-6x)=-4(x-3)2+36,
∵4≤x<6,
∴当x=4m时,S最大值=32 平方米.
点评:本题主要考查对二次函数的最值,二次函数的解析式,解一元二次方程等知识点的理解和掌握,能把实际问题转化成数学问题是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(靠墙一精英家教网边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若矩形花圃的面积为30平方米,求BC的长;
(3)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•永春县模拟)如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(不靠墙一边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(不靠墙一边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.

查看答案和解析>>

科目:初中数学 来源:2012年福建省泉州市永春二中等五校联考初三数学试卷(解析版) 题型:解答题

如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(不靠墙一边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.

查看答案和解析>>

科目:初中数学 来源:2009年福建省泉州市惠安县初中学业质量检查数学试卷(解析版) 题型:解答题

如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(靠墙一边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若矩形花圃的面积为30平方米,求BC的长;
(3)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.

查看答案和解析>>

同步练习册答案