精英家教网 > 初中数学 > 题目详情
不等于0的三个数a、b、c满足
1
a
+
1
b
+
1
c
=
1
a+b+c
,求证:a、b、c中至少有两个互为相反数.
分析:直接通分,将分式等式转化为整式等式,再因式分解得到(b+c)(a+b)(a+c)=0,可知其中至少有一个因式为0.
解答:证明:∵
1
a
+
1
b
+
1
c
=
1
a+b+c

ac+bc+ab
abc
=
1
a+b+c

bc(a+b+c)+ac(a+b+c)+ab(a+b+c)=abc
∴(b+c)a2+(2bc+c2+b2)a+bc2+b2c=0
即(a2b+ab2)+(a2c+ac2)+(abc+bc2)+(abc+b2c)=0,
ab(a+b)+ac(a+c)+bc(a+c)+bc(a+b)=0,
(a+b)(ab+bc)+(a+c)(ac+bc)=0,
b(a+b)(a+c)+c(a+c)(a+b)=0,
∴(b+c)(a+b)(a+c)=0
∴b=-c或a=-b或a=-c.
即a、b、c中至少有两个互为相反数.
点评:本题考查了分式加减运算的运用,先通分,去分母,将分式等式转化为整式等式,再运用因式分解的知识解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)在2004年6月的日历中(见图),任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是
 

(2)连续的自然数1至2004按图中的方式派成一个长方形阵列,用一个正方形框出16个数(如图)
①图中框出的这16个数之和是
 

②在上图中,要使一个正方形框出的16个数之和分别等于2000、2004,是否可能?若不可能,试说明理由.若有可能,请求出该正方形框出的16个数中的最小数与最大数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

下面是2006年12月的日历,仔细观察,你能发现其中有何规律吗?
(1)现任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是
a-7,a,a+7
a-7,a,a+7

(2)用正方形任意框出4个数,设最小的一个为a,则这4个数的和为
4a+16
4a+16

(3)现将连续自然数1至2008按图中的方式排成一个长方形阵列,用一个正方形框出16个数,如图
①图中框出的这16个数的和为
352
352

②图中要使一个正方形框出的16个数之和分别等于2000,2006,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)在2006年元月的日历中(见下图1),任意圈出一竖列上相邻的三个数,设中间一个数为a,则用a的代数式表示这三个数(从小到大排列)分别是
a-7,a,a+7
a-7,a,a+7


(2)现将连续的自然数1至2006按图2的方式排成一个长方形陈列,用一个正方形框出9个数(见右图2).
①图2中框出的这9个数的和是
162
162

②有同学说:仿照①,图2中任意框出的9个数的和一定是中间一个数的9倍.你同意这种说法吗?为什么?
③在图2中,要使一个正方形框出的9个数的和分别等于2005,2007,你认为是否可能?如果有可能,请求出该正方形框出的9个数中的最大数和最小数;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

不等于0的三个数a、b、c满足数学公式,求证:a、b、c中至少有两个互为相反数.

查看答案和解析>>

同步练习册答案