精英家教网 > 初中数学 > 题目详情
5.若2m=3,2n=2,则4m+2n=(  )
A.144B.96C.24D.12

分析 利用幂的乘方运算法则得出4m+2n=22(m+2n)=(2m×22n2,进而将已知代入求出答案.

解答 解:∵2n=2,
∴22n=4,
∴4m+2n=22(m+2n)=(2m×22n2=(3×4)2=144.
故选:A.

点评 此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是(  )
A.10°B.50°C.80°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.问题:如图(1),点F、E分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BF、EF、DE之间的数量关系.
(1)【发现证明】
如图1,小聪把△ADE绕点A顺时针旋转90°得到△ABG,从而发现EF=BF+ED.请完成下列填空.
解:由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°.
因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°∵∠1=∠2∴∠1+∠3=45°,即∠GAF=∠EAF.
又AG=AE,AF=AF∴△GAF≌△EAF∴GF=EF,故DE+BF=EF
(2)【类比延伸】
如图(2),四边形ABCD中,∠BAD=90°,AB=AD,∠B+∠D=180°,点F、E分别在边BC、CD上,则当∠EAF与∠BAD满足∠EAF=$\frac{1}{2}$∠BAD关系时,仍有EF=BF+DE.
(3)【探究应用】
如图(3),在某公园的同一水平面上,通道AB、AC、BC、AN、AM构成了等腰Rt△ABC,已知∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=$\sqrt{5}$米,CN=3$\sqrt{2}$米,求通道MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.三角形的角平分线,中线和高都在三角形的内部
B.直角三角形的高只有一条
C.钝角三角形的三条高都在三角形外
D.三角形的高至少有一条在三角形内

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平行四边形ABCD中,AB=4$\sqrt{2}$,∠A=45°,∠ADB=90°,点E从点B出发,以每秒1个单位的速度向终点D运动.点G在射线BD上,且EG=2BE(点G在E上方),以EG为对角线作正方形EFGH,设点E的运动时间为t(秒).
(1)用含t的代数式表示DG的长;
(2)求点H落在AD上时t的值;
(3)设正方形EFGH与平行四边形ABCD的重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)连结FH,直接写出运动过程中线段FH扫过的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知3n+3=(9n2,则n等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.
(1)求过A、B、C三点的抛物线的解析式;
(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;
(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在小学,我们知道正方形具有性质“四条边都相等,四个内角都是直角”,请适当利用上述知识,解答下列问题:
已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.
(1)填空:∠AGD+∠EGH=90°;
(2)若点G在点B的右边.
①求证:△DAG≌△GHE;
②试探索:EH-BG的值是否为定值,若是,请求出定值;若不是,请说明理由.
(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数;若点G是直线AB上的一个动点,其余条件不变,请直接写出点A与点F之间距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.
(1)若AB=2$\sqrt{2}$,求BC的长;
(2)如图1,当点G在AC上时,求证:BD=$\frac{1}{2}$CG;
(3)如图2,当点G在AC的垂直平分线上时,直接写出$\frac{AB}{CG}$的值.

查看答案和解析>>

同步练习册答案