精英家教网 > 初中数学 > 题目详情
已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.
(1)证明详见解析;(2)0或9.

试题分析:此题考查了抛物线与x轴的交点或一次函数与x轴的交点,是典型的分类讨论思想的应用.(1)根据解析式可知,当x=0时,与m值无关,故可知不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1).(2)应分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;②当函数为二次函数时,利用根与系数的关系解答.
试题解析:
解:(1)∵当x=0时,y=1.
∴不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,
所以△=(-6)2-4m=0,m=9.
综上,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.

(1)若抛物线过点A、B、C, 求此抛物线的解析式;
(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;
(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b=        ,c=         
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;
x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式           .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=(x―3)2+5的开口方向     ,对称轴是      ,顶点坐标是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数
(1)若点在此二次函数的图象上,则     (填 “>”、“=”或“<”);
(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若函数的图象与x轴只有一个公共点,则常数m的值是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第  象限.

查看答案和解析>>

同步练习册答案