精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
考点:全等三角形的判定与性质,旋转的性质
专题:几何综合题
分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;
(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.
解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°-∠ACD=∠FCE,
在△BCD和△FCE中,
CB=CF
∠BCD=∠FCE
CD=CE

∴△BCD≌△FCE(SAS).

(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,∠BCD=∠FCE,
∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,
∵EF∥CD,
∴∠E=180°-∠DCE=90°,
∴∠BDC=90°.
点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若一个圆锥的轴截面是一个腰长为6cm,底边长为2cm的等腰三角形,则这个圆锥的表面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是(  )
A、30cm2
B、30πcm2
C、15cm2
D、15πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知函数y=-
1
2
x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-
1
2
x+b和y=x的图象于点C、D.
(1)求点A的坐标;
(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机抽取1名同学单独展示,那么女生展示的概率为
 

(2)如果随机抽取2名同学共同展示,求同为男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=2x+a与直线y=-x+b都经过点A(-3,0),并且直线y=2x+a与y轴交于点B,直线y=-x+b与y轴交于点C,请你在同一直线坐标系中画出这两条直线并求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.

根据以上统计图提供的信息,回答下列问题:
(1)此次调查抽取的学生人数为a=
 
人,其中选择“绘画”的学生人数占抽样人数的百分比为b=
 

(2)补全条形统计图;
(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

复习课中,教师给出关于x的函数y=2kx2-(4k+1)x-k+1(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:
①存在函数,其图象经过(1,0)点;
②函数图象与坐标轴总有三个不同的交点;
③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.
教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,点E在AC上,且
AE
EC
=
1
2
,F为BE中点,AF的延长线交BC于D,求证:
BD
DC
=
1
3

查看答案和解析>>

同步练习册答案