精英家教网 > 初中数学 > 题目详情
经过点A并且半径等于5厘米的圆的圆心的轨迹是
以A为圆心,5cm为半径的圆
以A为圆心,5cm为半径的圆
分析:经过点A且半径等于5cm的圆的圆心的轨迹也就是到定点A的距离等于定长5cm的所有点的集合,然后根据圆的定义解答即可.
解答:解:根据题意,圆心的轨迹是到定点的距离等于定长5cm的所有点的集合,
根据圆的定义,即:以点A为圆心,5cm长为半径的圆.
故答案为:以点A为圆心,5cm长为半径的圆.
点评:本题考查了轨迹,理解几何语句并根据圆的定义,判断出圆心的轨迹是一个圆解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分精英家教网别是方程x2+kx+60=0的两根.
(1)求A、B两点的距离;
(2)求点A和点B的坐标;
(3)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•BC时,求点C的坐标;
(4)在⊙O′上是否存在点P,使△ABD的面积等于△POD的面积,即S△ABD=S△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点为(-
b
2a
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源: 题型:

圆的切线
[1]定义:和圆有
一个交点
一个交点
的直线叫圆的切线.
[2]判定:(1)到圆心的距离等于这个圆的
半径
半径
的直线是圆的切线;
(2)经过半径
的外端
的外端
并且
垂直于
垂直于
这条半径的直线是圆的切线.
[3]性质:(1)圆的切线
垂直于
垂直于
切点
切点
的半径.
(2)从圆外一点引圆的两条切线,它们的切线长
相等
相等
,圆心和这个点的连线平分
两切线的夹角
两切线的夹角
.(切线长定理)
结论:P是⊙O外一点,PA、PB分别切⊙O于A、B,C是弧AB上一点,DE切⊙O于C交PA、PB于D、E,则△PDE的周长为
2PA
2PA

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求A、B两点的距离以及点A和点B的坐标;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•BC时,求点C的坐标;
(3)若在以点C为顶点,且过点B的抛物线上和在⊙O′上是否分别存在点P,使△ABD的面积等于△POD的面积,即S△ABD=S△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 沪科九年级版 2009-2010学年 第16期 总第172期 沪科版 题型:022

当一条直线只经过圆上一点,并且垂直于过该点的半径时,圆心到直线的距离一定等于半径,直线也就一定是圆的切线.由于直线与圆只有三种位置关系,如果直线与圆不相切,就一定相交或相离.当直线与圆相交或相离时,圆心到直线的距离都不等于半径.所以,当圆心与直线的距离等于半径时,直线与圆相切.

切线判定:经过半径________并且________这条半径的直线是圆的切线.

查看答案和解析>>

同步练习册答案