精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知抛物线y=-x2+2x+c过点A(-1,0);直线l:y=-数学公式x+3与x轴交于点B,与y轴交于点C,与抛物线的对称轴交于点M;抛物线的顶点为D.
(1)求抛物线的解析式及顶点D的坐标.
(2)过点A作AP⊥l于点P,P为垂足,求点P的坐标.
(3)若N为直线l上一动点,过点N作x轴的垂线与抛物线交于点E.问:是否存在这样的点N,使得以点D、M、N、E为顶点的四边形为平行四边形?若存在,求出点N的横坐标;若不存在,请说明理由.

解:(1)将点(-1,0)代入y=-x2+2x+c,
得0=-1-2+c,
解得:c=3.
故可得抛物线解析式为:y=-x2+2x+3,
将抛物线的解析式化为顶点式为y=-(x-1)2+4,
故顶点D的坐标为(1,4);

(2)由(1)y=-x2+2x+3,可得点B坐标为(4,0),
设点P的坐标为(x,y),
∵OB=4,OC=3,
∴BC=5.
又∵△ABP∽△CBO,
=
故PB=×AB=×5=4,
又∵Py=PBsin∠CBO,
∴Py=4×=
代入y=-x+3可得:=-x+3,
解得 x=
所以点P坐标为();

(3)将x=1代入y=-x+3,得y=,故点M的坐标为(1,),
即可得DM=D纵坐标-M纵坐标=4-=
要使得以点D、M、N、E为顶点的四边形为平行四边形,只需NE=DM即可,
即只要NE=即可,
设点N坐标为(x,-x+3),点E坐标为(x,-x2+2x+3),
①由NE=E纵坐标-N纵坐标=(-x2+2x+3)-(-x+3)=,得4x2-11x+7=0,
解之得x=或x=1(此时点N和D、M共线,不合题意,舍去),
②由NE=N纵坐标-E纵坐标=(-x+3)-(-x2+2x+3)=,得4x2-11x-7=0,
解得:x=
综上所述,满足题意的点N的横坐标为x1=,x2=,x3=
分析:(1)将点A的坐标代入抛物线解析式即可得出c的值,从而得出了函数解析式,化为顶点式可直接得出点D的坐标;
(2)先求出OB、BC,然后根据△ABP∽△OBC,求出PB,再由Py=PBsin∠CBO,可得出点P的纵坐标,代入函数解析式可得出横坐标;
(3)根据题意可得要使得以点D、M、N、E为顶点的四边形为平行四边形,只需NE=DM即可,从而得出方程,求解即可得出点N的坐标.
点评:此题考查了二次函数的综合题,涉及了相似三角形的判定与性质、平行四边形的判定及解方程的知识,解答此类大综合题关键是能够将所学的知识融会贯通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案