精英家教网 > 初中数学 > 题目详情

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数数学公式图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线数学公式与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

解:(1)由点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数的B点,
得到B(1,1),
将x=1,y=1代入y=中得:k=1,
则反比例函数解析式为y=

(2)在x轴上存在点D,使△DBC是等腰三角形,理由为:
分两种情况考虑:
当C为等腰三角形的顶角顶点时,以C为圆心,CB长为半径画弧,与x轴交于D1,D2,如图所示,

过C作CM⊥x轴于点M,
∵B(1,1),即ON=BN=1,且C(-1,-1),即CM=OM=1,
∴OB=OC=
∴BC=OB+OC=2,即CD1=CD2=BC=2
在Rt△CMD1中,根据勾股定理得:CD12=CM2+MD12
∴(22=12+MD12,即MD1=
∴OD1=MD1+OM=+1,又D1在x轴负半轴上,
∴D1(--1,0),
同理D2-1,0);
当B为等腰三角形的顶角顶点时,以B为圆心,BC长为半径画弧,与x轴交于D3,D4,如图所示,
过点B作BN⊥x轴于点N,同理可得BD3=BD4=BC=2
在Rt△BND3中,根据勾股定理得:BD32=BN2+ND32
∴(22=12+ND32,即ND3=
∴OD3=ND3-ON=-1,又D1在x轴负半轴上,
∴D3(-+1,0),
同理D4+1,0),
综上,所有符合条件的点D的坐标为(--1,0)或(-1,0)或(-+1,0)或(+1,0);

(3)当点P运动时,∠MON的度数不变,为45°,理由为:
设P坐标为(a,),
∵OE=OF=
∴EF=2,∠OBA=∠OAB=45°,
∴ME=GE=-a),FN=FH=-),
∴FM=EF-ME=a,EN=EF-FN=
∴FM•EN=a•=2=OE•OF,
=
又∵∠OFM=∠NEO=45°,
∴△FMO∽△EON,
∴∠FMO=∠EON,
∴∠MEO+∠MOE=∠MON+∠MOE,
则∠MON=∠MEO=45°.
分析:(1)由A点绕原点O逆时针旋转90°与点B重合,根据A的坐标得出B点的坐标,将B的坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;
(2)在x轴上存在点D,使△DBC是等腰三角形,理由为:分两种情况考虑,(i)以C为圆心,CB长为半径画弧于x轴交于两点,分别为D1和D2的位置,如图所示,过C作CM垂直于x轴于点M,由B的坐标得到C的坐标,确定出CM与CD1的长,在直角三角形CMD1中,利用勾股定理求出MD1的长,由MD1+OM求出OD1的长,确定出D1的坐标,同理求出D2的坐标;(ii)以B为圆心,BC长为半径画弧于x轴交于两点,分别为D3与D4的位置,过B作BN垂直于x轴于点N,在直角三角形BND3中,利用勾股定理求出ND3的长,由ND3-ON求出OD3的长,确定出D3的坐标,同理确定出D4的坐标,综上,得到所有满足题意的D的坐标;
(3)当点P运动时,∠MON的度数不变,为45°,理由为:由P在反比例函数图象上,设P的坐标为(a,),进而确定出PG与OG的长,由一次函数的解析式求出E和F的坐标,确定出OE与OF的长,利用勾股定理求出EF的长,且得到三角形OEF为等腰直角三角形,可得出两个角为45°,进而得到三角形MEG与三角形FHN都为等腰直角三角形,用OE-OG表示出GE,进而表示出ME,用EF-ME表示出FM,同理表示出NE,求出FM与NE的乘积,发现与OE与OF的乘积相等,将积的恒等式化为比例式,再由夹角相等,利用两边对应成比例且夹角相等的两三角形相似得到三角形FOM与三角形EON相似,根据相似三角形的对应角相等可得出∠FMO=∠EON,而∠FMO为三角形MOE的外角,利用外角性质得到两个角相加,又∠EON等于两个角相加,利用等式的性质得到∠MON=∠MEO相等,由∠MEO为45° 可得出∠MON为45°.
点评:此题考查了反比例函数的性质,相似三角形的判定与性质,等腰三角形的性质,坐标与图形性质,勾股定理,一次函数图象与坐标轴的交点,旋转的性质,以及利用待定系数法求函数解析式,利用了分类讨论及数形结合的数学思想,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:
矩形、直角梯形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;
(3)如图2,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、我们给出如下定义:如图2所示,若一个四边形的两组相邻两边分别相等,则称这个四边形为筝形四边形,把这两条相等的邻边称为这个四边形的筝边.
(1)写出一个你所学过的特殊四边形中是筝形四边形的图形的名称
矩形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(0,3),B(3,0),请你画出以格点为顶点,OA,OB为边的筝形四边OAMB;
(3)如图2,在筝形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求证:2AB2=BD2

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)如图甲,已知格点(小正方形的顶点)O(0,0)A(3,0),B(0,4),请你画出以格点为顶点,OA、OB为勾股边且对角线相等的勾股四边形OAMB;
(2)如图乙,若C(1,2),那么在图中所有格点中是否能找到一点D,使以CA、CB为勾股边的四边形ACBD是勾股四边形.如果能找到,请写出D点的坐标(不需要证明);
(3)如图丙,AC、BD是四边形ABCD的两条对角线,△ABD是等边三角形,∠DCB=30°.求证:四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数y=
k
x
图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线y=-x+
2
与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

同步练习册答案