精英家教网 > 初中数学 > 题目详情
如图,梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于点E,且DE=1,AD=4,∠B=45°.
(1)求BC的长;
(2)直线AB以每秒0.5个单位的速度向右平移,交AD于点P,交BC于点Q,则当直线AB的移动时间为多少秒,形成的四边形ABQP恰好为菱形?(结果精确到0.01秒).
分析:(1)先根据DE⊥BC,∠B=45°,DE=1即可求出CE的长,再根据AD=3即可得出BC的长;
(2)在Rt△CDE中,先根据勾股定理求出CD的长,故可得出AB的长,设当直线AB的移动时间为t秒时形成的四边形ABQP恰好为菱形,根据菱形的四条边相等即可得出关于t的方程,求出t的值即可.
解答:解:(1)∵梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于点E,且DE=1,AD=4,∠B=45°.
∴∠B=45°,
∴DE=CE=1,
∴BC=AD+2CE=4+2×1=6;

(2)∵在Rt△CDE中,DE=CE=1,
∴CD=
DE2+CE2
=
12+12
=
2

∵AB=CD,
∴AB=
2

设当直线AB的移动时间为t秒时形成的四边形ABQP恰好为菱形,则AP=AB,
∴0.5t=
2
,解得t=2
2
≈2.83(秒).
点评:本题考查的是等腰梯形的性质及菱形的判定定理,熟知等腰梯形的两腰相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案