精英家教网 > 初中数学 > 题目详情

△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)如果BC=10,AB=12,求CG的长.

解:如图,连接OD,CD,BG,
(1)∵BC为⊙O的直径,
∴∠BDC=90°,
∵DF⊥AC,
∴∠AFD=90°,
∵AC=BC,
∴∠A=∠ABC,
∴∠BCD=∠ADF,
∵∠ADF=∠EDB,
∵OC=OD,
∴∠BCD=∠ODC,
∴∠ODC=∠EDB,
∴∠ODC+∠BDO=90°,
∴∠EDB+∠BDO=90°,
即∠EDO=90°,
∴OD⊥EF,
∴EF与⊙O相切,

(2)∵BC为⊙O的直径,
∴BG⊥AC,
∵∠A=∠ABC,
∴△ABG∽△BCD,

∵OD⊥EF,AC⊥EF,
∴OD∥AC,
∵OB=OC,
∴BD=AD,
∵AB=12,
∴BD=AD=6,
∵BC=10,
∴AC=BC=10,

∴AG=7.2,
∴CG=AC-AG=10-7.2=2.8.

分析:根据题意做出辅助线连接OD,CD,BG,(1)由圆周角定理和垂直的性质推出∠BDC=∠AFD=90°,再由等腰三角形的性质推出∠A=∠ABC,根据余角的性质即可推出∠BCD=∠ADF,由∠ADF=∠EDB,OC=OD,推出∠BCD=∠ODC,通过等量代换即可推出∠EDB+∠BDO=90°,即OD⊥EF,从而推出EF与⊙O相切,(2)由BG⊥AC,∠A=∠ABC,推出△ABG∽△BCD,求得比例式,根据OD⊥EF,AC⊥EF,推出OD∥AC,根据平行线等分线段定理推出BD=AD后,结合已知即可求出BD=AD=6,由AC=BC=10,即可求出AG=7.2,结合图形即可推出CG=AC-AG=10-7.2=2.8.
点评:本题主要考察相似三角形的判定与性质、圆周角定理、切线的判定、余角的概念与性质、等腰三角形的性质及平行线的性质等知识点,关键在于运用数形结合的思想,结合相关性质定理,正确的做出辅助线,推出∠ODC=∠EDB,
OD⊥EF;通过求证△ABG∽△BCD,正确的推出关于对应边的比例式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC>BC,D是AC边上一点,连接BD.
(1)要使△CBD∽△CAB,还需要补充一个条件是
 
;(只要求填一个)
(2)若△CBD∽△CAB,且AD=2,BC=
3
,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,
∠ABE=∠DBM.
(1)如图1,当∠ABC=45°时,求证:AE=
2
MD;
(2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为
AE=2MD
AE=2MD

(3)在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=2
7
,求tan∠PCB和tan∠ACP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当t为何值时,P、Q两点的距离为5
2
cm?
(2)当t为何值时,△PCQ的面积为15cm2
(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)求证:△ACD≌△BCD;
(2)求∠A;
(3)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(4)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

同步练习册答案