·ÖÎö £¨1£©ÓÉy=kx-2k+4£¬¿ÉµÃy-4=k£¨x-2£©£¬ÓÉy=kx-2k+4¹ý¶¨µã£¬ÔòxÓëyµÄÖµÓëkÎ޹أ¬¿ÉµÃ$\left\{\begin{array}{l}{x-2=0}\\{y-4=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬½ø¶øµÃ³öCµãµÄ×ø±ê£¬¼´¿ÉµÃ³öÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬
£¨2£©ÓÉk=-$\frac{4}{3}$ʱ£¬µÃ³öÖ±ÏßlµÄ½âÎöʽΪy=-$\frac{4}{3}$x+$\frac{20}{3}$£¬´Ó¶øµÃ³öµãEµÄ×ø±ê£¬ÓÉFC¡ÍCE£¬¡ÏDCB=90¡ã£¬¡ÏDCF=¡ÏBCE£¬¿ÉµÃ¡÷DCF¡Õ¡÷BCE£¨ASA£©£¬ÓÉDF=BE=5-2=3£¬AF=1£¬µÃ³öµãF£¨-2£¬1£©£¬ÓÉÖ±ÏßEFµÄ½âÎöʽΪy=-$\frac{1}{7}$x+$\frac{5}{7}$£¬Ö±ÏßBDµÄ½âÎöʽΪy=-x+2£¬ÁªÁ¢µÃµÃ³öG£¨0£¬2£©£¬ÀûÓÃÁ½µã¼äµÄ¾àÀë¿ÉµÃ³öGHµÄÖµ£¬
£¨3£©ÔÚxÖáÉϽØÈ¡BP=AB£¬Á¬½ÓNP¡¢CP£¬ÓÉCN=$\frac{1}{2}$AB=2£¬CP=4$\sqrt{2}$£¬¿ÉµÃNP¡ÜCP-CN=4$\sqrt{2}$-2£¬ËùÒÔµ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃ×î´óÖµ£¬ÓÖÓÉMΪANµÄÖе㣬BΪAPµÄÖе㣬µÃ³öÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪBM=$\frac{1}{2}$NP¡Ü2$\sqrt{2}$-1£¬ÀûÓÃÏàËÆÈý½ÇÐÎÏàËÆ±È¿ÉµÃ³öNµÄ×ø±ê£®
½â´ð ½â£º£¨1£©ÓÉy=kx-2k+4£¬µÃy-4=k£¨x-2£©£¬
¡ßÖ±Ïßl£ºy=kx-2k+4¹ý¶¨µã£¬ÔòxÓëyµÄÖµÓëkÎ޹أ¬
¡à$\left\{\begin{array}{l}{x-2=0}\\{y-4=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬
¡àC£¨2£¬4£©£¬
¡àÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬
£¨2£©µ±k=-$\frac{4}{3}$ʱ£¬Ö±ÏßlµÄ½âÎöʽΪy=-$\frac{4}{3}$x+$\frac{20}{3}$£¬
µ±y=0ʱ£¬x=5£¬
¡àE£¨5£¬0£©£¬
¡ßFC¡ÍCE£¬¡ÏDCB=90¡ã£¬
¡à¡ÏDCF=¡ÏBCE£¬
ÔÚ¡÷DCFºÍ¡÷BCEÖУ¬
$\left\{\begin{array}{l}{¡ÏDCF=¡ÏBCE}\\{CD=CB}\\{¡ÏCDF=¡ÏCBE}\end{array}\right.$£¬
¡à¡÷DCF¡Õ¡÷BCE£¨ASA£©£¬
¡àDF=BE=5-2=3£¬AF=1£¬
¡àF£¨-2£¬1£©
¡àÖ±ÏßEFµÄ½âÎöʽΪy=-$\frac{1}{7}$x+$\frac{5}{7}$£¬
¡ßB£¨2£¬0£©£¬D£¨-2£¬4£©£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-x+2£¬
ÁªÁ¢µÃ$\left\{\begin{array}{l}{y=-\frac{1}{7}x+\frac{5}{7}}\\{y=-x+2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£¬
¡ßG£¨0£¬2£©£¬
¡àGH=$\sqrt{£¨\frac{3}{2}-0£©^{2}+£¨\frac{1}{2}-2£©^{2}}$=$\frac{3\sqrt{2}}{2}$£¬
£¨3£©Èçͼ3£¬ÔÚxÖáÉϽØÈ¡BP=AB£¬Á¬½ÓNP¡¢CP£¬![]()
¡ßCN=$\frac{1}{2}$AB=2£¬CP=4$\sqrt{2}$£¬
¡àNP¡ÜCP-CN=4$\sqrt{2}$-2£¬
µ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃ×î´óÖµ£¬
ÓÖ¡ßMΪANµÄÖе㣬BΪAPµÄÖе㣬
¡àÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪBM=$\frac{1}{2}$NP¡Ü2$\sqrt{2}$-1£¬
ËùÒÔÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪ2$\sqrt{2}$-1£»
Èçͼ4£¬C¡¢N¡¢PÈýµã¹²Ïߣ¬![]()
BE=4£¬EN=4$\sqrt{2}$-2£¬
ÉèN£¨x£¬y£©£¬$\frac{y}{BC}$=$\frac{EN}{EC}$£¬µÃ$\frac{y}{4}$=$\frac{4\sqrt{2}-2}{4\sqrt{2}}$£¬½âµÃy=4-$\sqrt{2}$£¬
$\frac{6-x}{4}$=$\frac{4\sqrt{2}-2}{4\sqrt{2}}$£¬½âµÃx=2+$\sqrt{2}$
¡à´ËʱN£¨2+$\sqrt{2}$£¬4-$\sqrt{2}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÌâ£¬Éæ¼°Ò»´Îº¯Êý½âÎöʽ¡¢È«µÈÈý½ÇÐεÄÅж¨¡¢Èý½ÇÐεÄÈý±ß¹ØÏµ¼°ÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±È£¬½âÌâµÄ¹Ø¼üÊǵ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃBMµÄ³¤¶ÈµÄ×îСֵ£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | 5 | C£® | 7 | D£® | 9 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-x+y£©£¨x-y£© | B£® | £¨y-1£©£¨-1-y£© | C£® | £¨x-2£©£¨x+1£© | D£® | £¨2x+y£©£¨2y-x£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 50¡ã | B£® | 70¡ã | C£® | 110¡ã | D£® | 130¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com