19£®Èçͼ1£¬Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Õý·½ÐÎABCDµÄ±ßABÔÚxÖáÉÏ£¬µãOÊÇABµÄÖе㣬ֱÏßl£ºy=kx-2k+4¹ý¶¨µãC£¬½»xÖáÓÚµãE£®
£¨1£©ÇóÕý·½ÐÎABCDµÄ±ß³¤£»
£¨2£©Èçͼ2£¬µ±k=-$\frac{4}{3}$ʱ£¬¹ýµãC×÷FC¡ÍCE£¬½»ADÓÚµãF£¬Á¬½ÓEF£¬BDÏཻÓÚµãH£¬BD½»yÖáÓÚG£¬ÇóÏß¶ÎGHµÄ³¤£®
£¨3£©Èçͼ3£¬ÔÚÖ±ÏßlÉÏÓÐÒ»µãN£¬CN=$\frac{1}{2}AB$£¬Á¬½ÓAN£¬µãMΪANµÄÖе㣬Á¬½ÓBM£¬ÇóÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵ£¬²¢Çó³ö´ËʱµãNµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉy=kx-2k+4£¬¿ÉµÃy-4=k£¨x-2£©£¬ÓÉy=kx-2k+4¹ý¶¨µã£¬ÔòxÓëyµÄÖµÓëkÎ޹أ¬¿ÉµÃ$\left\{\begin{array}{l}{x-2=0}\\{y-4=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬½ø¶øµÃ³öCµãµÄ×ø±ê£¬¼´¿ÉµÃ³öÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬
£¨2£©ÓÉk=-$\frac{4}{3}$ʱ£¬µÃ³öÖ±ÏßlµÄ½âÎöʽΪy=-$\frac{4}{3}$x+$\frac{20}{3}$£¬´Ó¶øµÃ³öµãEµÄ×ø±ê£¬ÓÉFC¡ÍCE£¬¡ÏDCB=90¡ã£¬¡ÏDCF=¡ÏBCE£¬¿ÉµÃ¡÷DCF¡Õ¡÷BCE£¨ASA£©£¬ÓÉDF=BE=5-2=3£¬AF=1£¬µÃ³öµãF£¨-2£¬1£©£¬ÓÉÖ±ÏßEFµÄ½âÎöʽΪy=-$\frac{1}{7}$x+$\frac{5}{7}$£¬Ö±ÏßBDµÄ½âÎöʽΪy=-x+2£¬ÁªÁ¢µÃµÃ³öG£¨0£¬2£©£¬ÀûÓÃÁ½µã¼äµÄ¾àÀë¿ÉµÃ³öGHµÄÖµ£¬
£¨3£©ÔÚxÖáÉϽØÈ¡BP=AB£¬Á¬½ÓNP¡¢CP£¬ÓÉCN=$\frac{1}{2}$AB=2£¬CP=4$\sqrt{2}$£¬¿ÉµÃNP¡ÜCP-CN=4$\sqrt{2}$-2£¬ËùÒÔµ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃ×î´óÖµ£¬ÓÖÓÉMΪANµÄÖе㣬BΪAPµÄÖе㣬µÃ³öÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪBM=$\frac{1}{2}$NP¡Ü2$\sqrt{2}$-1£¬ÀûÓÃÏàËÆÈý½ÇÐÎÏàËÆ±È¿ÉµÃ³öNµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÓÉy=kx-2k+4£¬µÃy-4=k£¨x-2£©£¬
¡ßÖ±Ïßl£ºy=kx-2k+4¹ý¶¨µã£¬ÔòxÓëyµÄÖµÓëkÎ޹أ¬
¡à$\left\{\begin{array}{l}{x-2=0}\\{y-4=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬
¡àC£¨2£¬4£©£¬
¡àÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬
£¨2£©µ±k=-$\frac{4}{3}$ʱ£¬Ö±ÏßlµÄ½âÎöʽΪy=-$\frac{4}{3}$x+$\frac{20}{3}$£¬
µ±y=0ʱ£¬x=5£¬
¡àE£¨5£¬0£©£¬
¡ßFC¡ÍCE£¬¡ÏDCB=90¡ã£¬
¡à¡ÏDCF=¡ÏBCE£¬
ÔÚ¡÷DCFºÍ¡÷BCEÖУ¬
$\left\{\begin{array}{l}{¡ÏDCF=¡ÏBCE}\\{CD=CB}\\{¡ÏCDF=¡ÏCBE}\end{array}\right.$£¬
¡à¡÷DCF¡Õ¡÷BCE£¨ASA£©£¬
¡àDF=BE=5-2=3£¬AF=1£¬
¡àF£¨-2£¬1£©
¡àÖ±ÏßEFµÄ½âÎöʽΪy=-$\frac{1}{7}$x+$\frac{5}{7}$£¬
¡ßB£¨2£¬0£©£¬D£¨-2£¬4£©£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-x+2£¬
ÁªÁ¢µÃ$\left\{\begin{array}{l}{y=-\frac{1}{7}x+\frac{5}{7}}\\{y=-x+2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£¬
¡ßG£¨0£¬2£©£¬
¡àGH=$\sqrt{£¨\frac{3}{2}-0£©^{2}+£¨\frac{1}{2}-2£©^{2}}$=$\frac{3\sqrt{2}}{2}$£¬
£¨3£©Èçͼ3£¬ÔÚxÖáÉϽØÈ¡BP=AB£¬Á¬½ÓNP¡¢CP£¬

¡ßCN=$\frac{1}{2}$AB=2£¬CP=4$\sqrt{2}$£¬
¡àNP¡ÜCP-CN=4$\sqrt{2}$-2£¬
µ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃ×î´óÖµ£¬
ÓÖ¡ßMΪANµÄÖе㣬BΪAPµÄÖе㣬
¡àÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪBM=$\frac{1}{2}$NP¡Ü2$\sqrt{2}$-1£¬
ËùÒÔÏß¶ÎBMµÄ³¤¶ÈµÄ×îСֵΪ2$\sqrt{2}$-1£»
Èçͼ4£¬C¡¢N¡¢PÈýµã¹²Ïߣ¬

BE=4£¬EN=4$\sqrt{2}$-2£¬
ÉèN£¨x£¬y£©£¬$\frac{y}{BC}$=$\frac{EN}{EC}$£¬µÃ$\frac{y}{4}$=$\frac{4\sqrt{2}-2}{4\sqrt{2}}$£¬½âµÃy=4-$\sqrt{2}$£¬
$\frac{6-x}{4}$=$\frac{4\sqrt{2}-2}{4\sqrt{2}}$£¬½âµÃx=2+$\sqrt{2}$
¡à´ËʱN£¨2+$\sqrt{2}$£¬4-$\sqrt{2}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÌâ£¬Éæ¼°Ò»´Îº¯Êý½âÎöʽ¡¢È«µÈÈý½ÇÐεÄÅж¨¡¢Èý½ÇÐεÄÈý±ß¹ØÏµ¼°ÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±È£¬½âÌâµÄ¹Ø¼üÊǵ±C¡¢N¡¢PÈýµã¹²Ïßʱ£¬È¡µÃBMµÄ³¤¶ÈµÄ×îСֵ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬µãAÊÇ·´±ÈÀýº¯Êýy=$\frac{2}{x}$£¨x£¾0£©µÄͼÏóÉÏÈÎÒâÒ»µã£¬AB¡ÎxÖá²¢·´±ÈÀýº¯Êýy=-$\frac{3}{x}$µÄͼÏóÓÚµãB£¬ÒÔABΪ±ß×÷?ABCD£¬ÆäÖеãC£¬DÔÚxÖáÉÏ£¬Ôò?ABCDµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®3B£®5C£®7D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬M¡¢N·Ö±ðÊDZßAD¡¢BCµÄÖе㣬E¡¢F·Ö±ðÊDZßBM¡¢CMµÄÖе㣬µ±AB£ºAD=1£º2ʱ£¬ËıßÐÎMENFÊÇÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÄÜÓÃÆ½·½²î¹«Ê½¼ÆËãµÄÊÇ£¨¡¡¡¡£©
A£®£¨-x+y£©£¨x-y£©B£®£¨y-1£©£¨-1-y£©C£®£¨x-2£©£¨x+1£©D£®£¨2x+y£©£¨2y-x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Ô­À´ÊÇÖØµþµÄÁ½¸öÖ±½ÇÈý½ÇÐΣ¬½«ÆäÖÐÒ»¸öÈý½ÇÐÎÑØ×ÅBC·½ÏòÆ½ÒÆÏß¶ÎBEµÄ¾àÀ룬¾ÍµÃµ½´ËͼÐΣ¬ÏÂÁнáÂÛÕýÈ·µÄÓУ¨¡¡¡¡£©
¢ÙAC¡ÎDF£»¢ÚHE=5£»¢ÛCF=5£»¢ÜÒõÓ°²¿·ÖÃæ»ýΪ$\frac{55}{2}$£®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ËıßÐÎOABCµÄOµãÎª×ø±êÔ­µã£¬A¡¢CÁ½µã·Ö±ðÔÚyÖáºÍxÖáÉÏ£¬AB¡ÎOC£¬OA=8£¬AB=24£¬OC=26£¬¶¯µãP´ÓA¿ªÊ¼ÑØAB±ßÏòµãDÒÔ1¸öµ¥Î»/sµÄËÙ¶ÈÔ˶¯£¬¶¯µãQ´ÓC¿ªÊ¼ÑØCO±ßÏòµãOÒÔ3¸öµ¥Î»/sµÄËÙ¶ÈÔ˶¯£¬P¡¢Q·Ö±ð´ÓA¡¢Cͬʱ³ö·¢£¬µ±Ò»µãµ½´ïʱÁíÒ»µãҲֹͣ£¬ÉèÔ˶¯Ê±¼äΪt£®
£¨1£©ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©µ±tΪºÎֵʱ£¬PQ¡ÎCB£¿
£¨3£©ÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹µÃPQ½«ËıßÐÎOABCµÄÃæ»ý·Ö³É2£º3Á½²¿·Ö£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª9.972=99.4009£¬9.982=99.6004£¬9.992=99.8001£¬$\sqrt{997000}$Ö®ÖµµÄ¸öλÊý×ÖΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©·Ö½âÒòʽ£ºx4-8x2y2+16y4
£¨2£©½â·½³Ì£º$\frac{2}{2x+1}$+$\frac{1}{2x-1}$=$\frac{5}{4{x}^{2}-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼËùʾ£¬ÒÑÖªa¡Îb£¬¡Ï1=50¡ã£¬Ôò¡Ï2µÈÓÚ£¨¡¡¡¡£©
A£®50¡ãB£®70¡ãC£®110¡ãD£®130¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸