精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值和顶点Q的坐标;
(2)设点P是x轴上方抛物线上的一个动点,过点P作PH⊥x轴,H为垂足,求折线P-H-O长度的最大值.
(1)把点A(4,0)抛物线y=-x2+mx
得,-16+4m=0,
解得m=4,
故此抛物线的解析式为y=-x2+4x.(3分)
Q点坐标为x=-
b
2a
=-
4
2×(-1)
=2,y=
4ac-b2
4a
=
-42
4×(-1)
=4.(6分)

(2)设点P(x,-x2+4x),
则折线P-H-O的长度:l=-x2+5x=-(x-
5
2
2+
25
4

∴折线P-H-O的长度的最大值为
25
4
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标;
(3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设抛物线y=ax2+bx+c与X轴交于两不同的点A(-1,0),B(m,0),(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=90°.
(1)求m的值和该抛物线的解析式;
(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似?若存在,求出点P的坐标;若不存在,请说明理由.
(3)连接AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k•FH,若点M不在该抛物线上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一次函数图象与x轴y轴交于A(6,0)B(0,2
3
)线段AB的垂直平分线交x轴于点C交y轴于点D
求:(1)求这个一次函数的解析式;
(2)过A,B,C三点的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.
(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植的某种蔬菜,根据今年的市场行情,预计从3月1日起的50天内,它的市场售价y1(万元)与上市时间x的关系可用图(1)中的一条折线表示;他的种植成本y2(万元)与上市时间x的关系可用力(2)中的抛物线的一部分来表示.若市场售价减去种植成本为纯利润

(1)求y1、y2关于x的函数关系式;
(2)哪天上市这种绿色蔬菜既不赔本也不赚钱?
(3)哪天上市的蔬菜的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(b、c为常数).
(1)若二次函数的图象经过A(-2,-3)和B(2,5)两点,求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标及对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图中是抛物线形拱桥,当水面在n时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?

查看答案和解析>>

同步练习册答案