精英家教网 > 初中数学 > 题目详情

求证:相似三角形对应角平分线的比等于相似比.

已知:如图,已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,△ABC和△A1B1C1的相似比为k,AD、A1D1分别是△ABC和△A1B1C1的角平分线.
求证:=k;
证明:∵△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,
∴∠B=∠B1,∠BAC=∠B1A1C1
∵AD、A1D1分别是△ABC,△A1B1C1的角平分线,
∴∠BAD=∠BAC,∠B1A1D1=∠B1A1C1
∴∠BAD=∠B1A1D1
∴△ABD∽△A1B1D1
=
=k.
分析:画出图形,写出已知,求证,然后根据相似三角形对应角相等可得∠B=∠B1,∠BAC=∠B1A1C1,再根据角平分线的定义求出∠BAD=∠B1A1D1,然后利用两组角对应相等两三角形相似,根据相似三角形对应边成比例列式证明即可.
点评:本题考查了相似三角形的性质与判定,主要利用了相似三角形对应角相等的性质,相似三角形对应边成比例的性质,以及两组角对应相等两三角形相似的判定方法,要注意文字叙述性命题的证明格式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为
 

(A)2、点P,(B)
1
2
、点P,( C)2、点O,(D)
1
2
、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题精英家教网
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【图形变换的探究与猜想】
从特殊到一般,从全等到相似;求证线段的数量关系或位置关系.关键是第一问的全等的证明,发现全等的三角形,一般是利用ASA完成证明,从而得到需要证明的相似三角形(利用两边对应成比例且夹角相等).
例:正方形ABCD,E为直线AB上任意一点,DF⊥DE交直线BC于点F,直线EF、AC交于点H,连接DH.

(1)①如图1,当点E在边AB上时,判断线段DH与线段EF之间的数量关系和位置关系;
②如图2,当点E在边AB的反向延长线上时,判断线段DH与线段EF之间的数量关系和位置关系;写出你的结论并从①、②中任选一个证明;
(2)如图3,若点E在AB边的延长线上,其它条件不变,完成图3,判断线段DH与线段EF之间的数量关系和位置关系,直接写出你的结论,不需要证明;
(3)如图4,若将图1中的正方形ABCD改为矩形ABCD为正方形,且AB=kAD,其它条件不变,判断线段DH与线段EF之间的数量关系和位置关系,直接写出结论,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

求证:相似三角形对应角平分线的比等于相似比.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年上海市松江区九年级(上)月考数学试卷(10月份)(解析版) 题型:解答题

求证:相似三角形对应角平分线的比等于相似比.

查看答案和解析>>

同步练习册答案