精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
(1)y=-x2+2x+3;(2)8;(3)点G不在该抛物线上.

试题分析:(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式.
(2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积.
(3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可.
(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,

解得
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线AB:与抛物线交于A、B两点,
(1)直线AB总经过一个定点C,请直接写出点C坐标;
(2)当时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一个二次函数的关系式为 y=x2-2bx+c.
(1)若该二次函数的图象与x轴只有一个交点,
①则b、c 应满足关系为                
②若该二次函数的图象经过A(m,n)、B(m +6,n)两点,求n的值;
(2)若该二次函数的图象与x轴有两个交点C(6,0)、D(k,0),线段CD(含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为21,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过A(,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式及顶点坐标;
(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;
(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,∠AMN=∠ANM?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:
①2a+b=0;②4a+2b+c>0;③B点坐标为(4,0);④当x<-1时,y>0.
其中正确的是(  )
A.①②      B.③④      C.①④      D.②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

方程的正数根的个数为(  )
A.1个B.2个C.3D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线-1的图像向左平移2个单位,再向上平移1个单位,所得抛物线         .

查看答案和解析>>

同步练习册答案