分析 作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB=10、GG′=AD=5,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.
解答
解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.
∵AE=CG,BE=BE′,
∴E′G′=AB=10,
∵GG′=AD=5,
∴E′G=$\sqrt{E′G{′}^{2}+GG{′}^{2}}$=5$\sqrt{5}$,
∴C四边形EFGH=2E′G=10$\sqrt{5}$.
故答案为:10$\sqrt{5}$.
点评 题考查了轴对称中的最短路线问题以及矩形的性质,找出四边形EFGH周长取最小值时点E、F、G之间为位置关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| A商品 | B商品 | |
| 进价(元/件) | 30 | 40 |
| 售价(元/件) | 50 | 70 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 小明 | 小华 | 小芳 | |
| 笔记本(本) | 15 | 24 | 27 |
| 钢笔(支) | 25 | 40 | 45 |
| 总价(元) | 330 | 528 | 585 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com