精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
(1)把A(-1,0)、B(1,0)代入y=x2+bx+c得:
1-b+c=0
1+b+c=0.

解得
b=0
c=-1.

∴二次函数的关系式是y=x2-1,
答:这个二次函数的关系式是y=x2-1.

(2)设点P坐标为(x,y),则当⊙P与两坐标轴都相切时,有y=±x.
由y=x,得x2-1=x,
即x2-x-1=0,
解得x=
5
2

由y=-x,得x2-1=-x,
即x2+x-1=0,
解得x=
-1±
5
2

∴⊙P的半径为r=|x|=
5
±1
2

答:半径r的值是为
5
±1
2


(3)设点P坐标为(x,y),
∵⊙P的半径为1,
∴当y=0时,x2-1=0,
解得:x=±1,
即⊙P与y轴相切,
又当x=0时,y=-1,
∴当y>0或y<-1时,⊙P与y相离;
当-1≤y<0时,⊙P与y相交,
答:半径为1的⊙P在抛物线上,当点P的纵坐标在y>0或y<-1范围内取值时,⊙P与y轴相离;在-1≤y<0范围内取值时,⊙P与y轴相交.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,有一抛物线形拱桥,拱顶M距桥面1米,桥拱跨度AB=12米,拱高MN=4米.
(1)求表示该拱桥抛物线的解析式;
(2)按规定,汽车通过桥下时载货最高处与桥拱之间的距离CD不得小于0.5米.今有一宽4米,高2.5米(载货最高处与地面AB的距离)的平顶运货汽车要通过拱桥,问该汽车能否通过?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个横截面为抛物线形的遂道底部宽12米,高6米,如图,车辆双向通行,规定车辆必须在中心线右侧距道路边缘2米这一范围内行驶,并保持车辆顶部与遂道有不少于
1
3
米的空隙,你能否根据这些要求,建立适当的坐标系,利用所学的函数知识,确定通过隧道车辆的高度限制.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:m是非负数,抛物线y=x2-2(m+1)x-(m+3)的顶点Q在直线y=-2x-2上,且和x轴交于点A、B(点A在点B的左侧).
(1)求A、B、Q三点的坐标.
(2)如果点P的坐标为(1,1).求证:PA和直线y=-2x-2垂直.
(3)点M(x,1)在抛物线上,判断∠AMB和∠BAQ的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座拱型桥,桥下的水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF为多少?

(1)若把它看作抛物线的一部分,在坐标系中(如图①),可设抛物线的表达式为y=ax2+c.请你填空:a=______,c=______,EF=______米;
(2)若把它看作圆的一部分,可构造图形(如图②)请你计算:
(3)请你估计(2)中EF与(1)中的EF的差的近似值(误差小于0.1米).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

东方商厦专销某品牌的计算器,已知每只计算器的进价是12元,售价是20元.为了促销,商厦决定:凡是一次性购买10只以上(不含10只)的顾客,每多买1只计算器,其购买的每只计算器的售价就降低O.10元(假设顾客购买了18只计算器,则每只计算器售价为:20-0.10×(18-10)=19.20元,顾客应付的购货款为:18×19.20=345.60元),但最低售价为16元/只.
(1)求顾客至少一次性购买多少只计算器,才能以最低价购买?
(2)设顾客一次性购买x(10<x≤50)只计算器时,东方商厦可获利润y(元),试求y与x之间的函数关系式及商厦的最大利润;
(3)有一天,一位顾客一次性购买了46只计算器,另一位顾客一次性购买了50只计算器,结果商厦发现卖50只反而比卖46只赚的钱少.为了使每次获利随着销量的增大而增大,在其他促销条件不变的情况下,商厦应将最低价16元/只至少提高到多少?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示的抛物线是二次函数y=ax2-(a2-1)x+1的图象,那么a的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.

查看答案和解析>>

同步练习册答案