精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5
5
,这个矩形的长宽各是多少?
分析:在△DEF中求出DF与DE,EF,DA的关系,证明△BCF∽△FDE得出BF与EF的关系,根据勾股定理求出BF的长,从而求出矩形的长宽.
解答:解:由AE:ED=5:3,
设AE=5x,ED=3x,∴AD=BC=8x,
由题意得EF=AE=5x,∵∠D=90°,
∴DF=
EF2-DE2
=4x
.(2分)
∵∠BFE=∠A=90°,
∴∠DFE+∠BFC=90°,
∵∠D=90°,
∴∠DFE+∠DEF=90°.
∴∠DEF=∠BFC.
∵∠C=∠D=90°,
∴△BCF∽△FDE,
BF
EF
=
BC
DF

BF
5x
=
8x
4x

BF=10x,(4分)
在Rt△BEF中
∵EF2+BF2=BE2
∴(5x)2+(10x)2=(5
5
2x=±1(舍负).(6分)
∴AB=BF=10BC=8,即这个矩形长为10,宽为8.
点评:要掌握翻折变换(折叠问题)的规律,本题考查的知识点较多,希望同学们将所学的知识融汇贯通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:已知抛物线y=
1
4
x2+
3
2
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
2
5
DF.试探究此时点M是否在抛物线上,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在矩形ABCD中,AB=4,AD=6,经过点A作一直线交边BC于点E,并把矩形分成两部分,一是直角梯形,一是直角三角形,若梯形的面积与直角三角形的面积之比为3:1,则BE的长为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x -3 -2 1 2
y -
5
2
-4 -
5
2
0
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知在矩形ABCD中,AB=4,AD=6,经过点A作一直线交边BC于点E,并把矩形分成两部分,一是直角梯形,一是直角三角形,若梯形的面积与直角三角形的面积之比为3:1,则BE的长为________.

查看答案和解析>>

科目:初中数学 来源:2009年中考数学模拟考试六校联考试卷(解析版) 题型:填空题

如图,已知在矩形ABCD中,AB=4,AD=6,经过点A作一直线交边BC于点E,并把矩形分成两部分,一是直角梯形,一是直角三角形,若梯形的面积与直角三角形的面积之比为3:1,则BE的长为   

查看答案和解析>>

同步练习册答案