精英家教网 > 初中数学 > 题目详情
7、如图,△ABC为等腰三角形,把它沿底边BC翻折后,得到△DBC.请你判断四边形ABDC的形状,并说出你的理由.
分析:因为△ABC为等腰三角形,所以AB=AC,由翻折的性质知,AB=BD,AC=CD,所以四边形的四边相等,为菱形.
解答:解:四边形ABCD为菱形.
理由是:
由翻折得△ABC≌△DBC.所以AC=CD,AB=BD,
因为△ABC为等腰三角形,
所以AB=AC,
所以AC=CD=AB=BD,
故四边形ABCD为菱形.
点评:本题利用了:1、翻折的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
2、等腰三角形的性质,菱形的概念求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,△ABC为等腰三角形,AB=AC,∠A=40°,D,E,F分别在BC,AC,AB上,且CE=CD,BD=BF,则∠EDF的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等腰直角三角形,它的面积为8平方厘米,以它的斜边为边的正方形BCDE的面积为(  )平方厘米.
A、16B、24C、64D、32

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等腰直角三角形∠BAC=90°,AD是斜边BC上的中线,△ABD旋转到△ACE的位置.
(1)旋转中心是哪一点?旋转角度是多少度?
(2)四边形ADCE是正方形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•六合区一模)如图,△ABC为等腰直角三角形,∠C=90°,若在某一平面直角坐标系中,顶点C的坐标为(1,1),B的坐标为(2,0).则顶点A的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为(  )

查看答案和解析>>

同步练习册答案