精英家教网 > 初中数学 > 题目详情
(2013•东营)如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数y=
m
x
(m≠0)
在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=
4
5

(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
分析:(1)过A点作AD⊥x轴于点D,根据已知的∠AOC的正弦值以及OA的长,利用三角形函数的定义求出AD的长,再利用勾股定理求出OD的长,即可得到点A的坐标,把点A的坐标分别代入到反比例函数和一次函数的解析式中即可确定出两函数的解析式;
(2)根据x轴上点的特征,令一次函数的y=0,求出x的值,确定出点B的坐标,得到线段OB的长,利用三角形的面积公式即可求出三角形AOB的面积.
解答:解:(1)过A点作AD⊥x轴于点D,
∵sin∠AOC=
AD
AO
=
4
5
,OA=5,
∴AD=4,
在Rt△AOD中,由勾股定理得:DO=3,
∵点A在第一象限,
∴点A的坐标为(3,4),
将A的坐标为(3,4)代入y=
m
x
,得4=
m
3

∴m=12,
∴该反比例函数的解析式为y=
12
x

将A的坐标为(3,4)代入y=nx+2得:n=
2
3

∴一次函数的解析式是y=
2
3
x+2;

(2)在y=
2
3
x+2中,令y=0,即
2
3
x+2=0,
∴x=-3,
∴点B的坐标是(-3,0)
∴OB=3,又AD=4,
∴S△AOB=
1
2
OB•AD=
1
2
×3×4=6,
则△AOB的面积为6.
点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:勾股定理,待定系数法求函数的解析式,三角形的面积,以及三角函数的定义,用待定系数法确定函数的解析式,是常用的一种解题方法,同学们要熟练掌握这种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东营)如图,已知AB∥CD,AD和BC相交于点O,∠A=50°,∠AOB=105°,则∠C等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为
1.3
1.3
m(容器厚度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE的长.

查看答案和解析>>

同步练习册答案