精英家教网 > 初中数学 > 题目详情

(本题满分14分 第(1)小题4分,第(2)小题4分,第(3)小题6分)

已知:如图,在△ABC中,AB=AC=15, cos∠A=.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.

(1)求底边BC的长;

(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;

(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

 

【答案】

(1)BC=3

(2)y =x+. 0<x≤15)

(3)x=2或5或14时满足△MPN的一条边与AC垂直

【解析】

试题分析:解:(1)作BH⊥AC于点H(如图一),

∵在Rt△ABH中,cos∠A=,AB=15,

∴AH=12………………………………………………(1分)

∴BH=9.………………………………………………(1分)

∵AC=15

∴CH=3.………………………………………………(1分)

∵BC2=BH2+CH2,∴BC2=92+32=90,∴BC=3.…(1分)

(2)作OE⊥AB于点E,OF⊥AC于点F(如图一),

∵点O是BC的中点,∴OE=OF=BH=

∵AM=2MB,AB=AC=15,∴AM=10,BM=5.

∵PA=x,∴PC=15-x,

∴y = S△ABC-S△BOM-S△COPBH·AC―OE·BM―OF·PC

×9×15-…………………(1+1分)

x+.…………………………………(1分)

定义域:(0<x≤15).…………………………… (1分)

(3)①当PN⊥AC时(如图二),作MG⊥AC于点G,

∵在Rt△AMG中,cos∠A=,AM=10

∴AG=8,∴MG=6.

①若点P1在AG上,由折叠知:∠AP1M=135°,∴∠MP1G=45°.

∵MG⊥AC,∴P1G=MG=6,………(1分)∴AP1=AG-P1G=2.…………(1分)

②若点P2在CG上,由折叠知:∠AP2M=45°.

∵MG⊥AC,∴P2G=MG=6,∴AP2=AG+P2G=14.…………(2分)

③当MN⊥AC时(如图三),

由折叠知:∠AMP3=∠NMP3,P3N3=AP3=x,MN3=MA=10,

∴P3G=8-x,GN3=4.

∵P3N32=P3G2+GN32,∴x2=(8-x)2+42,∴x=5.……(2分)

综上所述,x=2或5或14时满足△MPN的一条边与AC垂直.

考点:三角函数应用

点评:本题的考查在于建立三角函数模型,主要考查函数的应用。解决此类问题通常有几个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果,其中关键是建立数学模型.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点PAB边上任意一点,直线PEAB,与边ACBC相交于E.点M在线段AP上,点N在线段BP上,EMEN

(1)如图1,当点E与点C重合时,求CM的长;

(2)如图2,当点E在边AC上时,点E不与点AC重合,设APxBNy,求y关于x的函数关系式,并写出函数的定义域;

(3)若△AME∽△ENB(△AME的顶点AME分别与△ENB的顶点ENB对应),求AP的长.

 

查看答案和解析>>

科目:初中数学 来源:2013届上海市闸北区中考一模数学试卷(带解析) 题型:解答题

(本题满分14分 第(1)小题4分,第(2)小题4分,第(3)小题6分)
已知:如图,在△ABC中,AB=AC=15, cos∠A=.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.

(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广东深圳卷)数学 题型:解答题

(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点PAB边上任意一点,直线PEAB,与边ACBC相交于E.点M在线段AP上,点N在线段BP上,EMEN

(1)如图1,当点E与点C重合时,求CM的长;

(2)如图2,当点E在边AC上时,点E不与点AC重合,设APxBNy,求y关于x的函数关系式,并写出函数的定义域;

(3)若△AME∽△ENB(△AME的顶点AME分别与△ENB的顶点ENB对应),求AP的长.

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年上海市考模拟数学试卷 题型:解答题

(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)

已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,

(1)求y关于x的函数关系式及自变量x的取值范围;

(2)当△NPF的面积为32时,求x的值;

(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。

 

查看答案和解析>>

同步练习册答案