精英家教网 > 初中数学 > 题目详情

根据定义,三角形的角平分线、中线和高线都是

[  ]

A.直线

B.线段

C.射线

D.以上都不对

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、填写下列解题过程中的推理根据:
如图,在△ABC中,∠A=40°,∠ABC的平分线BD交AC于点D,∠BDC=70°,求∠C的度数.
对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式)

解:∵∠BDC=∠A+∠ABD
三角形的一个外角等于与它不相邻的两个内角的和

∵∠A=40°,∠BDC=70°(已知)
∴∠ABD=
30
°(等式的性质)
∵BD平分∠ABC(已知)
∴∠ABC=2∠ABD(
角平分线的定义

∴∠ABC=60°(等式的性质)
∵∠A+∠ABC+∠C=
180
°(三角形的内角和是180°)
∠A=40°(已知),∠ABC=60°(已求)
∴∠C=
80
°(等式的性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知CD平分∠ACB,DE∥BC,说明△EDC是等腰三角形的理由.
根据解题的要求,填写适当的内容或理由.
解:∵DE∥BC      (已知)
∠EDC=∠DCB
∠EDC=∠DCB
  (两直线平行,内错角相等)
CD平分∠ACB
CD平分∠ACB
  (已知) 
∴∠ACD=∠BCD  (
角平分线的定义
角平分线的定义

∴∠EDC=∠ACB
∴DE=EC(
等角对等边
等角对等边

∴△EDC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC,∠A是锐角,那么
sinA=数学公式,cosA=数学公式,tanA=数学公式,cotA=数学公式

为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:
设有一个角α,我们以它的顶点作为原点,以它的始边作为x轴的正半轴ox,建立直角坐标系(图2),在角α的终边上任取一点P,它的横坐标是x,纵坐标是y,点P 和原点(0,0)的距离为数学公式(r总是正的),然后把角α的三角函数规定为:
sinα=数学公式,cosα=数学公式,tanα=数学公式,cotα=数学公式
我们知道,图1的四个比值的大小与角A的大小有关,而与直角三角形的大小无关,同样图2中四个比值的大小也仅与角α的大小有关,而与点P在角α的终边位置无关.
比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题,每题4分,共16分
(1)若270°<α<360°,则角α的三角函数值sinα、cosα、tanα、cotα,其中取正值的是______;
(2)若角α的终边与直线y=2x重合,则sinα+cosα=______;
(3)若角α是钝角,其终边上一点P(x,数学公式),且cosα=数学公式,则tanα______;
(4)若 0°≤α≤90°,则sinα+cosα 的取值范围是______.

查看答案和解析>>

同步练习册答案