【题目】如图,在平面直角坐标系xOy中,已知点A(0,8),B(6,0),点C(3,a)在线段AB上.
(1)则a的值为________;
(2)若点D(-4,3),求直线CD的函数表达式;
(3)点(-5,-4)在直线CD上吗?说明理由.
【答案】4
【解析】(1)利用待定系数法求出AB的解析式,然后把点C坐标代入即可得;
(2)由C、D的坐标,利用待定系数法即可求得直线CD的解析式;
(3)把x=-5代入直线CD解析式,通过计算比较即可得..
(1)设直线AB的解析式为y=mx+n,
把A(0,8)、B(6,0)分别代入得:,
解得:,
所以直线AB的解析式为:y=x+8,
由点C(3,a)在线段AB上,则有a=-4+8=4,
故答案为:4;
(2)设直线CD的函数表达式为y=kx+b,
将C(3,4),D(-4,3)代入得,
解得:,故直线CD的函数表达式为y=x+;
(3)点(-5,-4)不在直线CD上,理由如下:
当x=-5时,y=×(-5)+=≠-4,
∴点(-5,-4)不在直线CD上.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣ x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(Ⅰ)求抛物线的解析式及点D的坐标;
(Ⅱ)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(Ⅲ)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E、F分别是AB、CD的中点.
(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N.求证:△ABN≌△CDM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系xOy中,已知点A(0,3),B(2,3),OC=a.将梯形ABCO沿直线y=x折叠,点A落在线段OC上,对应点为E.
(1)求点E的坐标;
(2)①若BC∥AE,求a的值;(提示:两边互相平行的四边形是平行四边形,平行四边形的对边相等)
②如图②,若梯形ABCO的面积为2a,且直线y=mx将此梯形面积分为1∶2的两部分,求直线y=mx的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C,点D为BC边上(B,C点除外)的动点,∠EDF的两边与AB,AC分别交于点E,F,且BD=CF,BE=CD.
(1)求证:DE=DF;
(2)若∠EDF=m,用含m的代数式表示∠A的度数;
(3)连接EF,求当△DEF为等边三角形时∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个口袋中装有七个完全相同的小球,小球上分别标有-3、-2、-1、0、1、2、3七个数,搅匀后一次从中摸出一个小球,将小球上的数用表示,将的值分别代入函数和方程,恰好使得函数的图像经过二、四象限,且方程有整数解,那么这7个数中所有满足条件的的值之和是( )
A. 1 B. -1 C. -3 D. -4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在图(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图(1)能变为图(2),则图(2)中A格内的数是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于;(在横线上填上答案即可).
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求∠OCA度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com