精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边和BC边分别交于点D、点E,连接CD,且CD=CA,BD=6
5
,tan∠ADC=2.
(1)求证:CD是半圆O的切线;
(2)求半圆O的直径;
(3)求AD的长.
(1)证明:如图,连接OD,
∵OD=OB,
∴∠1=∠2,
∵CA=CD,
∴∠ADC=∠A,
在△ABC中,
∵∠ACB=90°,
∴∠A+∠1=90°,
∴∠ADC+∠2=90°,
∴∠CDO=90°,
∵OD为半圆O的半径,
∴CD为半圆O的切线;

(2)如图,连接DE,
∵BE为半圆O的直径,
∴∠EDB=90°,
∴∠1+∠3=90°,
∴∠ADC=∠3,
tan∠3=
BD
ED
=2

ED=3
5

EB=
BD2+DE2
=15


(3)作CF⊥AD于点F,
∵CD=CA,
∴AD=2AF=2DF,
设DF=x,
∵tan∠ADC=2,
∴CF=2x,
∵∠1+∠FCB=90°,
∴∠FCB=∠ADC,
∴tan∠FCB=2,
∴FB=4x,
∴BD=3x=6
5

解得x=2
5

∴AD=2DF=2x=4
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知点A的坐标为(
3
,3),AB丄x轴,垂足为B,连接OA,反比例函数y=
k
x
(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的
5
4
倍的长为半径作圆,则该圆与x轴的位置关系是______(填”相离”,“相切”或“相交“).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是半圆的直径,直线MN切半圆于点C,AM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圆的直径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动.
(1)如果∠POA=90°,求点P运动的时间;
(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C为AB延长线上的一点,CD交⊙O于点D,且∠A=∠C=30°.
(1)求证:CD是⊙O的切线;
(2)请判断线段AC是BC的多少倍,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上一点,且ADOC.
(1)求证:△ADB△OBC;
(2)若AB=2,BC=
5
,求AD的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠D=90°,AD=a,BC=b,AB=c,以AB为直径作⊙O.试探究:
(1)当a,b,c满足什么关系时,⊙O与DC相离?
(2)当a,b,c满足什么关系时,⊙O与DC相切?
(3)当a,b,c满足什么关系时,⊙O与DC相交?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB为直径的⊙O交AC于D,E是BC的中点,连接ED并延长交BA的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)求DB的长;
(3)求S△FAD:S△FDB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

PA、PB切⊙O于A、B,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB=______.

查看答案和解析>>

同步练习册答案