精英家教网 > 初中数学 > 题目详情

在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2-(m-1)x+m+4=0的两个实数根,则m的值为


  1. A.
    -4
  2. B.
    4
  3. C.
    8或-4
  4. D.
    8
D
分析:根据勾股定理求的a2+b2=25,即a2+b2=(a+b)2-2ab①,然后根据根与系数的关系求的a+b=m-1②ab=m+4③;最后由①②③联立方程组,即可求得m的值.
解答:∵斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b,
∴a2+b2=25,
又∵a2+b2=(a+b)2-2ab,
∴(a+b)2-2ab=25,①
∵a、b是关于x的方程x2-(m-1)x+m+4=0的两个实数根,
∴a+b=m-1,②
ab=m+4,③
由①②③,解得
m=-4,或m=8;
当m=-4时,ab=0,
∴a=0或b=0,(不合题意)
∴m=8;
故选D.
点评:本题综合考查了根与系数的关系、勾股定理的应用.解答此题时,需注意作为三角形的两边a、b均不为零这一条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2-(m-1)x+m+4=0的两个实数根,则m的值为
8

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,AC=BC,以斜边AB为一边作等边△ABD,使点C,D在AB的同侧;再以CD为一边作等边△CDE,使点C,E落在AD的异侧.若AE=1,则CD的长为(  )
A、
3
-1
B、
3
-1
2
C、
6
-
2
D、
6
-
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,在边长为2的正方形ABCD中,E为AB的中点,BM⊥CE,则Rt△BEM与Rt△BCM斜边上的高的比为
1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案