精英家教网 > 初中数学 > 题目详情

【题目】如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.

(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.

【答案】
(1)解:四边形OCED是矩形.

理由如下:∵DE∥AC,CE∥BD,

∴四边形OCED是平行四边形,

∵四边形ABCD是菱形,

∴∠COD=90°,

∴四边形OCED是矩形


(2)解:在菱形ABCD中,∵AC=6,BD=8,

∴OC= AC= ×6=3,OD= BD= ×8=4,

∴CD= = =5,

在矩形OCED中,OE=CD=5


【解析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,然后根据有一个角是直角的平行四边形是矩形解答;(2)根据菱形的对角线互相平分求出OC、OD,再根据勾股定理列式求出CD,然后根据矩形的对角线相等求解.
【考点精析】本题主要考查了菱形的性质和矩形的判定方法的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.

(1)求∠D的度数;
(2)求证:AC2=ADCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为

(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;

(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC和△A′B′C′在平面直角坐标系中的位置分别如图所示.

(1)分别写出下列各点的坐标:A_______;B_______;C_______

(2)△ABC由△A′B′C′经过怎样的平移得到?

答:_____________________________________

(3)求△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为45°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD 是改造后的斜坡(点D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.01m)[参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是(

A.α
B.90°﹣α
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=C.

(B类)已知如图,四边形ABCD中,AB=BC,A=C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=6,BC=8,AB=10

(1)尺规作图:作AD平分∠CAB,交BC于点D;

(2)求CD的长度.

查看答案和解析>>

同步练习册答案