精英家教网 > 初中数学 > 题目详情

(1)观察发现

如图①,⊙O的半径为1,点P为⊙O外一点 ,PO=2,在⊙O上找一点M,使得PM最长。

做法如下:作射线PO交⊙O于点M,则点M就是所求的点,此时PM=________。

请说明PM最长的理由。

(2)实践运用

     如图②,在等边三角形 ABC中,AB=2,以AB为斜边作直角三角形AMB,使CM最长.

做法如下:以AB为直径画⊙O,作射线CO交⊙O右侧于点M,则△AMB即为所求。

请按上述方法用三角板和圆规画出图形,并求出CM的长度。

             图①                  图②                    图③              

(3)拓展延伸

     如图③,在周长为m的任意形状的△ABC中,分别以AB、AC为斜边作直角三角形AMB,直角三角形ANC,使得线段MN最长,用尺规画出图形, 此时MN=_______。(保留作图痕迹)。

(1)PM=   3 ,(1分)

在圆上任取一点M

PM=PO+OM≥PM (2分)

(2)如图  (1分)   MN=,)

(3)如图(尺规画垂直平分线)(2分)  MN=0.5m       (1分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•六盘水)(1)观察发现
   如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
   作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.

   如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
3
3

 (2)实践运用
   如图(3):已知⊙O的直径CD为2,
AC
的度数为60°,点B是
AC 
的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为
2
2


  (3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察发现

如图1,⊙O的半径为1,点P为⊙O外一点,PO=2,在⊙O上找一点M,使得PM最长.
作法如下:作射线PO交⊙O于点M,则点M就是所求的点,此时PM=
3
3

请说明PM最长的理由.
(2)实践运用
如图2,在等边三角形 ABC中,AB=2,以AB为斜边作直角三角形AMB,使CM最长.
作法如下:以AB为直径画⊙O,作射线CO交⊙O右侧于点M,则△AMB即为所求.请按上述方法用三角板和圆规画出图形,并求出CM的长度.
(3)拓展延伸
如图3,在周长为m的任意形状的△ABC中,分别以AB、AC为斜边作直角三角形AMB,直角三角形ANC,使得线段MN最长,用尺规画出图形,此时MN=
0.5m
0.5m
.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省湖州八中七年级第二学期期中考试数学试卷(带解析) 题型:解答题

(1)观察发现
如题(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为     .  
   
(2)实践运用
如题(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.

查看答案和解析>>

科目:初中数学 来源:2015届浙江省七年级第二学期期中考试数学试卷(解析版) 题型:解答题

(1)观察发现

如题(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为     .  

   

(2)实践运用

如题(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸

如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏GSJY八年级第二次学情调研考试数学卷 题型:解答题

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为        . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

同步练习册答案