精英家教网 > 初中数学 > 题目详情

已知关于x的方程数学公式的两个解是数学公式
又已知关于x的方程数学公式的两个解是数学公式
又已知关于x的方程数学公式的两个解是数学公式
…,
小王认真分析和研究上述方程的特征,提出了如下的猜想.
关于x的方程数学公式的两个解是数学公式;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.
(1)关于x的方程数学公式的两个解是x1=______和x2=______;
(2)已知关于x的方程数学公式,则x的两个解是多少?

解:(1)根据猜想的结论,则x1=11,x2=

(2)原方程可以变形为x-1+=11+
则x-1=11,x-1=
则x1=12,x2=
分析:(1)根据上述的结论方程的两个解是,即可猜想得到答案;
(2)可以把x-1看作一个整体,即方程两边同时减去1,得x-1+=11+,然后根据猜想得到x-1=11,x-1=,进一步求得方程的解.
点评:此题要能够根据探索得到的结论进行分析求解,能够运用换元法进行求解,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(2k-3)x+k2+1=0.
问:(1)当k为何值时,此方程有实数根;
(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<数学公式
∴当k<数学公式时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2=数学公式=0,解得k=数学公式
检验知k=数学公式数学公式=0的解.
所以当k=数学公式时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:《第2章 一元二次方程》2010年创新题(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:《第23章 一元二次方程》2009年单元测试卷(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:2003年山东省潍坊市中考数学试卷(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

同步练习册答案