精英家教网 > 初中数学 > 题目详情
已知点C是线段BD上一动点,分别以线段BC和线段DC为边在BD同侧作等边△ABC和等边△CDE,⊙O是△ABC的外接圆.
(1)如图,求证:CE为⊙O的切线;
(2)若△CDE的边DE所在直线恰好与圆O相切,线段BD=4,求圆O的半径.
考点:切线的判定,等边三角形的性质
专题:
分析:(1)连结OC,根据等边三角形的性质得∠ACB=∠ECD=60°,则∠ACE=60°,再根据等边三角形的内外心重合得到∠ACO=30°,则∠OCE=90°,然后根据切线的判定定理即可得到结论;
(2)作OH⊥BC于H,连结OF、OC、FC,根据垂径定理得BH=CH,设OH=a,则CH=
3
a,OC=2a,所以BC=2
3
a,OF⊥FD,由△CDE为等边三角形得∠CED=60°,∠D=60°,则∠CEF=120°,易得∠COF=60°,于是可判断△OCF为等边三角形,根据等边三角形的性质得∠OFC=60°,FC=OC=2a,可计算出∠CFD=30°,则∠FCD=90°,由此得到CD=
3
3
FC=
2
3
3
a,根据BD=4,得出a的值,即可得出圆O的半径OC.
解答:(1)证明:连结OC,如图1,
∵△ABC和△CDE都是等边三角形,
∴∠ACB=∠ECD=60°,
∴∠ACE=60°,
∵⊙O是等边△ABC的外接圆,
∴点O是等边△ABC的外心和内心,
∴∠ACO=
1
2
∠ACB=30°,
∴∠OCE=30°+60°=90°,
∴OC⊥CE,
∴CE为⊙O的切线;
(2)解:作OH⊥BC于H,连结OF、OC、FC,如图2,
∵OH⊥BC,
∴BH=CH,
设OH=a,则CH=
3
a,OC=2a,
∴BC=2
3
a,
∵DF与⊙O切于点F,
∴OF⊥FD,
∵△CDE为等边三角形,
∴∠CED=60°,∠D=60°,
∴∠CEF=120°,
而∠OCE=∠OFE=90°,
∴∠COF=60°,
∴△OCF为等边三角形,
∴∠OFC=60°,FC=OC=2a,
∴∠CFD=30°,
∴∠FCD=90°,
∴CD=
3
3
FC=
2
3
3
a,
∵BD=4,
∴CD+BC=4,
2
3
3
a+2
3
a=4,
∴a=
3
2

∴OC=2a=
3
点评:本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和含30度的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,OA=OB=5cm,AB=8cm,⊙O的直径为6cm.求证:AB与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为6cm,射线PM经过点O,∠MPN=30°,射线PN与⊙O相切于点Q,A、B两点同时从点P出发,点A以2
3
cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动,设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

一个两位数,若交换个位和十位的位置,则所得新两位数比原数小9,这个两位数十位和个位上的数字各是多少?(用方程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A(0,5),点B(6,5).
(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:
①点P到A,B两点的距离相等;
②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)
(2)在(1)作出点P后,点P的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=5,CF=12,则AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是(  )
A、从家出发,休息一会,就回家
B、从家出发,一直散步(没有停留),然后回家
C、从家出发,休息一会,返回用时20分钟
D、从家出发,休息一会,继续行走一段,然后回家

查看答案和解析>>

科目:初中数学 来源: 题型:

下列图形中,既是轴对称图形又是中心对称图形的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线C1:y=-2x2-2x+1,抛物线C2:y=2x2-2x-1,若两抛物线关于原点对称称为“同胞”抛物线.
(1)试判断C1与C2是否为“同胞”抛物线;
(2)已知抛物线C1:y=-
1
2
x2-x+
3
2
其顶点为A,抛物线C2向左平移1个单位后正好与抛物线C1成“同胞”抛物线,求抛物线C2的表达式.

查看答案和解析>>

同步练习册答案