精英家教网 > 初中数学 > 题目详情

作业宝如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.

证明:连接OC,                      
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
又∵OB=OC,
∴∠OBC=∠OCB,
又∵∠DCB=∠A,
∴∠A+∠ABC=∠DCB+∠OCB=90°,
∴OC⊥DC,
∴CD是⊙O的切线.
分析:连接OC,根据圆周角定理得出∠ACB=∠ACO+∠BCO=90°,根据等腰三角形性质得出∠∠OBC=∠OCB,∠A=∠ACO,即可求出∠OCB+∠DCB=90°,根据切线的判定推出即可.
点评:本题考查了等腰三角形的性质,圆周角定理,切线的判定的应用,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案