如图,正比例函数的图象与反比例函数()的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量的取值范围.
(1)反比例函数的解析式为:;(2)B(-2,-2),自变量的取值范围是:-2<x<0或x>2.
解析试题分析:(1)由于点A的纵坐标已知,正比例函数已知,且点A在正比例函数上,所以将点A的纵坐标代入正比例函数的解析式中,即可求出点A的横坐标,然后将点A的横纵坐标代入反比例函数解析式中,即可求出k的值,从而求出反比例函数的解析式.(2)由于点B是正比例函数与反比例函数的图象的交点,所以有y1=y2,从而求得点B的坐标.y1>y2,从图象上看,就是直线在双曲线的上方,利用图象即可求出范围.
试题解析:(1)设A点的坐标为(m,2),代入得:
,所以点A的坐标为(2,2).∴.
∴反比例函数的解析式为:.(3分)
(2)当时,.解得.∴点B的坐标为(-2,- 2).
或者由反比例函数、正比例函数图象的对称性得点B的坐标为(-2,- 2).
由图象可知,当时,自变量的取值范围是:或.
考点:反比例函数的图象和性质.
科目:初中数学 来源: 题型:解答题
如图,是一辆小汽车沿一条高速公路匀速前进的时间t(小时)与速度x(千米/时)关系的图象,根据图象提供的信息回答下列问题:
(1)这条高速公路的全长是多少千米?
(2)写出速度与时间之间的函数关系.
(3)汽车最大速度可以达到多少?
(4)汽车最慢用几个小时可以到达?如果要在3小时以内到达,汽车的速度应不少于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知反比例函数y=(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知反比例函数 (m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.
(1)求此反比例函数的解析式和点B的坐标;
(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com