【题目】如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于点G.
(1)若M为边AD中点,求证△EFG是等腰三角形;
(2)若点G与点C重合,求线段MG的长;
(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.
【答案】
(1)
证明:∵四边形ABCD是矩形,
∴∠A=∠MDF=90°,
∵M为边AD中点,
∴MA=MD
在△MAE和△MDF中,
∴△MAE≌△MDF(ASA),
∴EM=FM,
又∵MG⊥EM,
∴EG=FG,
∴△EFG是等腰三角形;
(2)
解:如图1,
∵AB=3,AD=4,AE=1,AM=a
∴BE=AB﹣AE=3﹣1=2,BC=AD=4,
∴EM2=AE2+AM2,EC2=BE2+BC2,
∴EM2=1+a2,EC2=4+16=20,
∵CM2=EC2﹣EM2,
∴CM2=20﹣1﹣a2=19﹣a2,
∴CM= .
∵AB∥CD,
∴∠AEM=∠MFD,
又∵∠MCD+∠MFD=90°,∠AME+∠AEM=90°,
∴∠AME=∠MCD,
∵∠MAE=∠CDM=90°,
∴△MAE∽△CDM,
∴ = ,即 = ,
解得a=1或3,
代入CM= .
得CM=3 或 .
(3)
解:①当点M在AD上时,如图2,作MN⊥BC,交BC于点N,
∵AB=3,AD=4,AE=1,AM=a
∴EM= = ,MD=AD﹣AM=4﹣a,
∵∠A=∠MDF=90°,∠AME=∠DMF,
∴△MAE∽△MDF
∴ = ,
∴ = ,
∴FM= ,
∴EF=EM+FM= + = ,
∵AD∥BC,
∴∠MGN=∠DMG,
∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,
∴∠AME=∠DMG,
∴∠MGN=∠AEM,
∵∠MNG=∠MAE=90°,
∴△MNG∽△MAE
∴ = ,
∴ = ,
∴MG= ,
∴S= EFMG= × × = +6,
即S= +6,
当a= 时,S有最小整数值,S=1+6=7.
②当点M在AD的延长线上时,如图3,作MN⊥BC,交BC延长线于点N,
∵AB=3,AD=4,AE=1,AM=a
∴EM= = ,MD=a﹣4,
∵DC∥AB,
∴△MAE∽△MDF
∴ = ,
∴ = ,
∴FM= img src="http://thumb.zyjl.cn/questionBank/Upload/2017/08/15/10/03a9f863/SYS201708151049289122374001_DA/SYS201708151049289122374001_DA.012.png" width="57" height="25" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> ,
∴EF=EM﹣FM= ﹣ = ,
∵∠AME+∠EMN=90°,∠NMG+∠EMN=90°,
∴∠AME=∠NMG,
∵∠MNG=∠MAE=90°,
∴△MNG∽△MAE
∴ = ,
∴ = ,
∴MG= ,
∴S= EFMG= × × = +6,
即S= +6,
当a>4时,S没有整数值.
综上所述当a= 时,S有最小整数值,S=1+6=7.
【解析】(1)利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG是等腰三角形;(2)利用勾股定理EM2=AE2+AM2 , EC2=BE2+BC2 , 得出CM2=EC2﹣EM2 , 利用线段关系求出CM.再△MAE∽△CDM,求出a的值,再求出CM.(3)①当点M在AD上时,②:①当点M在AD的延长线上时,作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.
【考点精析】本题主要考查了相似三角形的性质的相关知识点,需要掌握对应角相等,对应边成比例的两个三角形叫做相似三角形才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a+2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2 .
上述4个判断中,正确的是( )
A.①②
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元函数y=﹣2x+m和反比例函数y= 的图象都经过点A(﹣2,1).
(1)求一次函数和反比例函数的解析式;
(2)求一次函数与反比例函数的另一个交点B的坐标;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB的顶点O与原点重合,直角顶点A在x轴上,顶点B的坐标为(4,3),直线与x轴、y轴分别交于点D、E,交OB于点F.
(1)写出图中的全等三角形及理由;
(2)求OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED为菱形;
(2)连接AE、BE,AE与BE相等吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=﹣ x2+ x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣ x2+ x+2的图象相交于点D,E.
(1)写出点A,点B的坐标;
(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;
(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com