精英家教网 > 初中数学 > 题目详情

如图,AB>AC,∠A的平分线与BC的垂直平分线相交于D,过D作DE⊥AB于E,作DF⊥AC于F.求证:BE=CF.

解:连接DB.
∵点D在BC的垂直平分线上,
∴DB=DC;
∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF;
∵∠DFC=∠DEB=90°,(已知),
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE(全等三角形的对应边相等).
分析:根据中垂线、角平分线的性质来证明△DCF≌△DEB(SAS),然后根据全等三角形的对应边相等推知BE=CF.
点评:本题综合考查了角平分线的性质、全等三角形的判定与性质、线段垂直平分线的性质.解答此题时是通过作辅助线BD构建全等三角形△DCF≌△DEB(SAS)来证明全等三角形的对应线段CF=BE.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.
求证:CE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接OB,OC,在⊙O外作∠BAD=∠BAO,A精英家教网D交OB的延长线于点D.
(1)在图中找出一对全等三角形,并进行证明;
(2)如果⊙O的半径为3,sin∠OAC=
12
,试求切线AC的长;
(3)试说明:△ABD分别是由△ABO,△ACO经过哪种变换得到的.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BC=AC=AD,那么∠BDC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:AB<AC+BC,其理由是
三角形任意两边之和大于第三边,任意两边之差小于第三边
三角形任意两边之和大于第三边,任意两边之差小于第三边

查看答案和解析>>

同步练习册答案