精英家教网 > 初中数学 > 题目详情
某市推出电脑上网包月制,每月收取费用用y(元)与上网时间x(小时)的函数关系式如图所示,其中AB是线段,且BC是射线.

(1)写出y与x之间的函数关系式及自变量的取值范围.
(2)若小王6月份上网25小时,他应付多少元的上网费用?7月份上网50小时又应付多少元呢?
(3)若小王8月份上网费用为100元,则他在该月份的上网时间是多少?
(1);(2)40,80;(3)60.

试题分析:(1)分两段表示函数关系式;
(2)取x=25,50分别代入相应的关系式计算求解;
(3)求y=100时x的值.
试题解析:(1)线段AB对应的解析式为 ;设射线BC对应的解析式为.∵B(30,40),C(40,60),∴,解之得:,∴
之间的函数关系式为
(2)当x=25时,y=40;当x=50时,y=2×50﹣20=80,故上网25小时,他应付40元的上网费用;上网50小时应付80元上网费;
(3)当y=100时,2x﹣20=100.解得 x=60,故若小王8月份上网费用为100元,则他在该月份的上网时间是60小时.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(3,6)与点(,﹣),求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
(1)每个文具盒、每支钢笔各多少元?
(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式。如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-x+4与反比例函数y=的图象相交于点A(-2,a),并且与x轴相交于点B。

(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司专销产品,第一批产品上市40天内全部售完.该公司对第一批产品上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品的销售利润与上市时间的关系.

(1)试写出第一批产品的市场日销售量与上市时间的关系式;
(2)第一批产品上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

华盛印染厂生产某种产品,每件产品出厂价为30元,成本价为20元(不含污水处理部分费用).在生产过程中,平均每生产1件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计了两种对污水进行处理的方案并准备实施.
方案一:工厂污水先净化处理后再排出,每处理1立方米污水所用的原料费用为2元,并且每月排污设备损耗等其它各项开支为27000元.
方案二:将污水排放到污水处理厂统一处理,每处理1立方米污水需付8元排污费.
(1)若实施方案一,为了确保印染厂有利润,则每月的产量应该满足怎样的条件?
(2)你认为该工厂应如何选择污水处理方案?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.

(1)取BC中点D,问OD+DA的长度是否发生改变,若会,说明理由;若不会,求出OD+DA长度;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标是(        ),直线OA的解析式是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数y=k(x+1)和y=,则它们在同一坐标系中的图象大致是(  )

查看答案和解析>>

同步练习册答案