精英家教网 > 初中数学 > 题目详情
(2003•厦门)已知一次函数y=kx+2的图象经过第一,二,三象限,且与x,y轴分别交于A、B两点O是原点,若△AOB的面积为2.
(1)求一次函数的解析式;
(2)设点P(m,n)(其中n≥0)是一次函数y=kx+2图象上的点,过点P向以原点O为圆心1为半径的⊙O引切线PC、PD,切点分别为C、D,①当-2≤m≤0时,求四边形PCOD的面积S的取值范围.②若CD=,求切点C、D的坐标.
【答案】分析:(1)因为直线与x,y轴分别交于A、B两点O是原点,△AOB的面积为2,所以A(-,0),B(0,2),×2×=2,解之即可;
(2)利用PC、PD切⊙O于C、D,可得∠PCO=∠PDO=90°,利用勾股定理可得PD=PC=,所以SPCOD=××2=,因为P(m,n)是y=x+2上的点,所以n=m+2,所以有SPCOD==,结合m的取值即可对S的取值作出判断;
(3)因为CD=,PC、PD是圆的切线,连接OP,则OP⊥CD,所以SPCOD=•CD•OP,即=,将n=m+2代入可得m的值,从而求出n=3,P(1,3),再设⊙O与x轴的正、负半轴交于点F、N,则F(1,0),N(-1,0),利用PF⊥OF,判定PF是过P的圆O的一条切线,所以F与D重合,D(1,0),再连接CN,作CM⊥DN于M,利用DN是直径,得到
∠NCD=90°,利用勾股定理可求出CN==
CM==
MD=
OM=-1=
所以C(-),D(1,0).
解答:解:(1)∵一次函数y=kx+2的图象经过第一,二,三象限,直线与x,y轴分别交于A、B两点O是原点,△AOB的面积为2,
∴A(-,0),B(0,2),
×2×=2,
解之k=1,
所以y=x+2;

(2)①∵PC、PD切⊙O于C、D,
∴∠PCO=∠PDO=90°,
∵OD=OC=1,OP2=m2+n2∴PD=PC=
∴SPCOD=××2=
∵P(m,n)是y=x+2上的点,
∴n=m+2,
∴SPCOD==
∵-2≤m≤0,
∴当m=-1时,S有最小值=1,当m=-2和m=0时,S有最大值=
∴1≤S≤
②∵CD=,PC、PD是圆的切线,连接OP,则OP⊥CD,
∴SPCOD=•CD•OP,
=
∵n=m+2,
∴m2+2m-3=0,
∴m=-3或m=1,
∵n≥0,
∴m=1,
∴n=3,P(1,3)
设⊙O与x轴的正、负半轴交于点F、N,则F(1,0),N(-1,0),
∴PF⊥OF,即PF是过P的圆O的一条切线,
∴F与D重合,D(1,0),
连接CN,作CM⊥DN于M,
∵DN是直径,
∴∠NCD=90°,
∵CD=,ND=2,
∴CN==
CM==
MD=
OM=-1=
∴C(-),D(1,0).
点评:本题需仔细分析题意,结合图形,利用勾股定理和切线的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•厦门)已知抛物线y=x2+(2k+1)x-k2+k.
(1)求证:此抛物线与x轴总有两个不同的交点;
(2)设x1、x2是此抛物线与x轴两个交点的横坐标,且满足x12+x22=-2k2+2k+1.
①求抛物线的解析式;
②设点P(m1,n1)、Q(m2,n2)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求m1+m2的值.

查看答案和解析>>

科目:初中数学 来源:2003年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2003•厦门)已知抛物线y=x2+(2k+1)x-k2+k.
(1)求证:此抛物线与x轴总有两个不同的交点;
(2)设x1、x2是此抛物线与x轴两个交点的横坐标,且满足x12+x22=-2k2+2k+1.
①求抛物线的解析式;
②设点P(m1,n1)、Q(m2,n2)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求m1+m2的值.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《反比例函数》(02)(解析版) 题型:解答题

(2003•厦门)已知平面直角坐标系上有6个点:A(3,3),B(1,1),C(9,1),D(5,3).E(-1,-9),F(-2,-
下面有2个小题,
(1)请将上述的6个点按下列的要求分成两类,并写出同类点具有而另一类点不具有的一个特征.(请将答案按下列要求写在横线上:特征不能用否定形式表述,点用字母表示.)
①甲类含两个点,乙类合其余四个点.
甲类:点______,______是同一类点,其特征是______.
乙类:点______,______,______,______,是同一类点,其特征是______.
②甲类合三个点,乙类合其余三个点.
甲类:点______,______,______是同一类点,其特征是______.
乙类:点______,______,______是同一类点,其特征是______.(2)判断下列命题是否正确,正确的在括号内打“√”,并说明理由;
错误的在括号内打“×”,并举反例说明.
①直线y=-2x+11与线段AD没有交点______;(如需要,可在坐标系上作出示意图)
②直线y=-2x+11将四边形ABCD分成面积相等的两部分______.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2003•厦门)已知平面直角坐标系上有6个点:A(3,3),B(1,1),C(9,1),D(5,3).E(-1,-9),F(-2,-
下面有2个小题,
(1)请将上述的6个点按下列的要求分成两类,并写出同类点具有而另一类点不具有的一个特征.(请将答案按下列要求写在横线上:特征不能用否定形式表述,点用字母表示.)
①甲类含两个点,乙类合其余四个点.
甲类:点______,______是同一类点,其特征是______.
乙类:点______,______,______,______,是同一类点,其特征是______.
②甲类合三个点,乙类合其余三个点.
甲类:点______,______,______是同一类点,其特征是______.
乙类:点______,______,______是同一类点,其特征是______.(2)判断下列命题是否正确,正确的在括号内打“√”,并说明理由;
错误的在括号内打“×”,并举反例说明.
①直线y=-2x+11与线段AD没有交点______;(如需要,可在坐标系上作出示意图)
②直线y=-2x+11将四边形ABCD分成面积相等的两部分______.

查看答案和解析>>

科目:初中数学 来源:2003年福建省厦门市中考数学试卷(解析版) 题型:选择题

(2003•厦门)已知以(-1,0)为圆心,1为半径的⊙M和抛物线y=x2+6x+11,现有两个命题:
(1)抛物线y=x2+6x+11与⊙M没有交点;
(2)将抛物线y=x2+6x+11向下平移3个单位,则此抛物线与⊙M相交.
则以下结论正确的是( )
A.只有命题(1)正确
B.只有命题(2)正确
C.命题(1),(2)都正确
D.命题(1),(2)都不正确

查看答案和解析>>

同步练习册答案