精英家教网 > 初中数学 > 题目详情
6.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,求证:BF⊥AC.
证明:
∵∠AGF=∠ABC(已知)
∴FG∥BC(同位角相等,两直线平行)
∴∠1=∠FBC(两直线平行,內错角相等)
又∵∠1+∠2=180°(已知)
∴∠2+∠FBC=180°(等量代换)
又∵DE⊥AC(已知)
∴∠DEC=∠DEA(垂直的定义)
∴∠BFC=∠DEC=90°(两直线平行,同位角相等)
∴BF⊥AC(垂直的定义)

分析 要证BF⊥AC,只要证得DE∥BF即可,由平行线的判定可知只需证∠2+∠BFC=180°,根据平行线的性质结合已知条件即可求证.

解答 证明:∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,两直线平行),
∴∠1=∠FBC(两直线平行,內错角相等);
又∵∠1+∠2=180°,
∴∠2+∠FBC=180°(等量代换),
∴BF∥DE;
∵DE⊥AC,
∴BF⊥AC,
故答案为同位角相等,两直线平行,两直线平行,內错角相等,∠2+∠FBC=180°,等量代换,∠DEA,垂直的定义,两直线平行,同位角相等,垂直的定义.

点评 本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:(a-b)2+b(3a-b)-a2,其中a=$\sqrt{2}$,b=$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,表示下列某个不等式的解集,其中正确的是(  )
A.x>2B.x<2C.x≥2D.x≤-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.菱形具有而矩形不一定具有的性质是(  )
A.对角相等B.每条对角线平分一组对角
C.对角线互相平分D.对边平行且相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知直线AB,CD相交于点O,OE平分∠AOD,FO⊥AB,垂足为O,若$\frac{3}{2}$∠BOD=∠DOE.
(1)求∠BOF的度数;
(2)请写出图中与∠BOD相等的所有的角.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,菱形ABCD的对角线长分别为a,b,以菱形ABCD各边的中点为顶点作四边形A1B1C1D1,然后再以四边形A1B1C1D1各边的中点为顶点作四边形A2B2C2D2,…,如此下去,可得到四边形A2014B2014C2014D2014,它的面积用含a,b的代数式表示为$\frac{1}{{2}^{2015}}$ab.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.
小明的作法:
(1)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)
(2)在射线BM上取一点D,使得BD=BA;
(3)连结AD,交BC于点E.线段AE即为所求.
小明的作法所蕴含的数学道理为等边对等角;两直线平行,内错角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图所示,⊙O是△ABC 的外接圆,AB是直径,∠ABC=30°,点E是OC的中点,连接AE并延长交⊙○于点D,连接OD,CD,BD.
(1)求证:△AEO≌△DEC;
(2)若AB=12,则四边形AODC的面积是18$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O,求证:△ABC≌△DCB.

查看答案和解析>>

同步练习册答案