精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则


  1. A.
    点B到AO的距离为sin54°
  2. B.
    点B到AO的距离为tan36°
  3. C.
    点A到OC的距离为sin36°sin54°
  4. D.
    点A到OC的距离为cos36°sin54°
C
分析:根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36°,即可判断A、B;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36°,AO=AB•sin54°,求出AD,即可判断C、D.
解答:解:
A、B到AO的距离是指BO的长,
∵AB∥OC,
∴∠BAO=∠AOC=36°,
∵在Rt△BOA中,∠BOA=90°,AB=1,
∴sin36°=
∴BO=ABsin36°=sin36°,
故本选项错误;
B、由以上可知,选项错误;
C、过A作AD⊥OC于D,则AD的长是点A到OC的距离,
∵∠BAO=36°,∠AOB=90°,
∴∠ABO=54°,
∵sin36°=
∴AD=AO•sin36°,
∵sin54°=
∴AO=AB•sin54°,
∵AB=1,
∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故本选项正确;
D、由以上可知,选项错误;
故选C.
点评:本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点C在x轴负半轴上,且OB=4OC.若抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)设该二次函数的图象的顶点为P,求四边形OAPB的面积;
(3)有两动点M,N同时从点O出发,其中点M以每秒2个单位长度的速度沿折线OAB按O→A→B的路线运动,点N以每秒4个单位长度的速度沿折线按O→B→A的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.
①请求出S关于t的函数关系式,并写出自变量t的取值范围;
②判断在①的过程中,t为何值时,△OMN的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABO中,直角边AO=BO=5.若点A到OC的距离为3,则点B到OC的距离为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则线段OA1的长与∠AOB1的度数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABO中,OB=8,tan∠OBA=.若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点C在轴负半轴上,且OB=4OC.若抛物线经过点A、B、C .

1.求该抛物线的解析式

2.设该二次函数的图象的顶点为P,求四边形OAPB的面积

3.有两动点M,N同时从点O出发,其中点M以每秒2个单位长度的速度沿折线OAB按O→A→B的路线运动,点N以每秒4个单位长度的速度沿折线按O→B→A的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S .

①请求出S关于t的函数关系式,并写出自变量t的取值范围;

②判断在①的过程中,t为何值时,△OMN 的面积最大?

 

查看答案和解析>>

同步练习册答案