如图,PA、PB分别切⊙O于A、B,连接PO、AB相交于D,C是⊙O上一点,∠C=60°。
(1)求∠APB的大小;
(2)若PO=20cm,求△AOB的面积。
![]()
解:(1)∵PA、PB分别切⊙O于A、B,∴OA⊥PA,OB⊥PB。∴∠PAO=∠PBO=90°.1分
∵∠C=60°,∴∠AOB=2∠C=2×60°=120°
∴∠APB=360°-∠PAO-∠PBO-∠AOB=
60°。
∵PA、PB分别切⊙O于A、B,∴∠A
PO=
∠APB=
×60°=30°,PA=PB。
∴P在AB的垂直平分线上。
∵OA=OB,∴O在AB的垂直平分线上,即OP是AB的垂直平分线,
∴OD⊥AB,AD=BD=
AB。∵∠PAO=90°,∴∠AOP=60°。
在Rt△PAO中,AO=
PO=
×20=10,
在Rt△AOD中,AD=AO•sin60°=10×
,OD=OA•cos60°=10×
=5,
∴AB=2AD=
,
∴△AOB的面积为:
AB•OD=
(cm2)。
科目:初中数学 来源: 题型:
如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:
(1)求∠OGF的度数;
(2)求座面EF与地面之间的距离。(可用计算器计算,结果保留两个有效数字,参考数据:sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989
![]()
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
2014年3月31日凌晨,重庆东水门长江大桥正式通车,重庆主城再添一座跨江大桥,为重庆的经济发展提供了帮助.王大爷为了感受重
庆交通的发展,搭乘公交车从家去参观东水门长江大桥,预计1个小时能到达.行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是王大爷转乘轻轨去观看大桥(轻轨速度大于公交车速度),结果按预计时间到达.下面能反映王大爷距大桥的距离
(千米)与时间
(小时)的函数关系的大致图象是( )
A. B. C
. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,△ABC的边AB在
x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物
线
经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com