精英家教网 > 初中数学 > 题目详情

在△ABC中,∠ABC=90°,BC=AB,P是内一点,且PA=1,PB=2,PC=3,试求∠APB的度数.

解:∵∠ABC=90°,BC=AB,
∴把△PBC绕B点逆时针旋转90°得到△DBA,如图,
∴BD=BP=2,AD=PC=3,∠PBD=90°,
∴△PBD为等腰直角三角形,
∴PD=PB=2,∠DPB=45°,
在△APD中,AP=1,PD=2,AD=3,
∵12+(22=32
∴AP2+PD2=AD2
∴△APD为直角三角形,
∴∠APD=90°,
∴∠APB=∠APD+∠DPB=90°+45°=135°.
分析:由于∠ABC=90°,BC=AB,则可以把△PBC绕B点逆时针旋转90°得到△DBA,根据旋转的性质得到BD=BP=2,AD=PC=3,∠PBD=90°,得到△PBD为等腰直角三角形,根据等腰直角三角形的性质得到PD=PB=2,∠DPB=45°,在△APD中易得AP2+PD2=AD2,根据勾股定理的逆定理得到△APD为直角三角形,然后利用∠APB=∠APD+∠DPB计算即可.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质以及勾股定理的逆定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案