精英家教网 > 初中数学 > 题目详情
17.如图,点E在?ABCD的边AD上,沿BE折叠,点A落在边CD上的点F处,若△FDE的周长为8,△FCB的周长为22.求FC的长.

分析 根据翻转变换的性质得到EF=EA,BF=BA,根据平行四边形的性质得到AD=BC,AB=CD,根据三角形的周长公式计算即可.

解答 解:由折叠的性质可知,EF=EA,BF=BA,
∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,
由题意得,BF+BC+CF=22,
则DC+BC+CF=22,
DE+DF+EF=8,
∴DE+EA+DF=AD+DF=8,
∴(DC+BC+CF)-(AD+DF)=22-8=14,即2FC=14,
解得,FC=7.

点评 本题考查的是翻转变换的性质、平行四边形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第23秒时,点E在量角器上对应的度数是92度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.某商品进价为50元,若按标价的8折出售仍可获利20%,则按标价出售可获利25元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,正六边形ABCDEF内接于⊙O,连接AD、BD,则∠DAB的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)已知x=-2是关于x的方程k-x-k(x+4)=-1的解,求k的值.
(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:k,若点D是AC的中点,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是中心对称的图形有(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在⊙O中,将圆心绕着圆周上一点A旋转一定角度θ,使旋转后的圆心落在⊙O上,则θ的值可以是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.小明将两块都含45°的三角板按如图所示放置,小明用量角器测得∠AOD=150°,则∠COB的度数为30°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.为进一步发展基础教育,近年来某县加大了对教育经费的投入,2014年投入3000万元,2016年投入7500万元,假设该县投入教育经费的年平均增长率为x,下面根据题意列出的方程正确的是(  )
A.3000x2=7500B.3000(1+x)2=7500
C.3000(1+x%)2=7500D.3000(1+x)+3000(1+x)2=7500

查看答案和解析>>

同步练习册答案