精英家教网 > 初中数学 > 题目详情
2.点(2,-4)在反比例函数y=$\frac{k}{x}$的图象上,则下列各点在此函数图象上的是(  )
A.(2,4)B.(-1,-8)C.(-2,-4)D.(4,-2)

分析 由点(2,-4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.

解答 解:∵点(2,-4)在反比例函数y=$\frac{k}{x}$的图象上,
∴k=2×(-4)=-8.
∵A中2×4=8;B中-1×(-8)=8;C中-2×(-4)=8;D中4×(-2)=-8,
∴点(4,-2)在反比例函数y=$\frac{k}{x}$的图象上.
故选D.

点评 本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是(  )
A.4B.3C.6D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,正方形ABCD的边长为2$\sqrt{2}$,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,抛物线y=-$\frac{1}{2}{x}^{2}+\frac{3}{2}x+2$与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算正确的是(  )
A.$\sqrt{8}$-$\sqrt{2}$=$\sqrt{2}$B.(-3)2=6C.3a4-2a2=a2D.(-a32=a5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是(  )
A.$\frac{1}{7}$B.$\frac{1}{3}$C.$\frac{1}{21}$D.$\frac{1}{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )
A.△AFD≌△DCEB.AF=$\frac{1}{2}$ADC.AB=AFD.BE=AD-DF

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.
(1)求证:MH为⊙O的切线.
(2)若MH=$\frac{3}{2}$,tan∠ABC=$\frac{3}{4}$,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2

查看答案和解析>>

同步练习册答案