精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
12x
的图象和一次函数y=kx-7的图象都经过P(m,2).有A、B两点在这个一次函数的图象上,过A、B向x轴作垂线,与这个反比例函数的图象分别交于C、D两点,连接C、D,若CD=AB,且A和B的横坐标分别为2和2+a.
(1)求这个一次函数的解析式;
(2)求a的值;
(3)求四边形ABCD的周长.
分析:(1)将P坐标代入反比例解析式中,求出m的值,确定出P的坐标,将P坐标代入一次函数解析式中求出k的值,即可确定出一次函数解析式;
(2)由题意及(1)中确定出的一次函数解析式,表示出A、B、C、D的坐标,由AB=CD,得到CD2=AB2,利用两点间的距离公式列出关于a的方程,求出方程的解即可得到a的值;
(3)由求出a的值,得到A、B、C、D的坐标,即可求出四边形ABCD的周长.
解答:解:(1)∵P(m,2)在反比例函数y=
12
x
的图象上,
∴将x=m,y=2代入反比例解析式得:2=
12
m
,即m=6,
∴P(6,2),
∵P(6,2)在y=kx-7上,
∴将x=6,y=2代入得:2=6k-7,即k=
3
2

∴一次函数解析式为y=
3
2
x-7;

(2)由条件知A(2,-4),B(2+a,-4+
3
2
a),C(2,6),D(2+a,
12
2+a
),
∵CD=AB,∴CD2=AB2
∴a2+(
12
a+2
-6)2=a2+
9
4
a2,即
12
a+2
-6=
3
2
a,即
12
a+2
-6=-
3
2
a,
解得:a=0(舍去)或a=-6;a=0(舍去)或a=2,
经检验a=-6与a=2是原方程的解,
则a的值为-6或2;

(3)当a=2时,A(2,-4),B(4,-1),C(2,6),D(4,3),四边形ABCD的周长为14+2
13

当a=-6时,A(2,-4),B(-4,-13),C(2,6),D(-4,-3),四边形ABCD的周长为20+2
117
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,两点间的距离公式,坐标与图形性质,以及勾股定理的应用,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案