精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c的部分对应值如下表:
x

-2
-1
0
1
2
3

y

5
0
-3
-4
-3
0

(1)二次函数图象所对应的顶点坐标为           
(2)当x=4时,y=           
(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是           
解:(1)(1,-4)
(2)y=5
(3)-1<x<3

试题分析:解:(1)∵二次函数y=ax2+bx+c过点(-1,0),(3,0),(0,-3),

∴y=x2-2x-3.

∴顶点坐标为(1,-4).
(2)∵y=x2-2x-3,
∴当x=4时,y=5.
(3)∵抛物线y=x2-2x-3与x轴交于(-1,0),(3,0),且a=1>0,
∴当函数值y<0时,-1<x<3.
点评:本题难度较低,主要考查学生对二次函数的掌握。在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线与抛物线相交于A,B两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且
(1)求b的值;
(2)求证:点在反比例函数的图象上;
(3)求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(-2,-5)、(1,4).
(1)求这个二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点A(2,0),与y轴的交点为B(0,-1).

(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.
(3)在(2)的基础上,设直线x=t(0<t<10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一条抛物线具有下列性质:(1)经过点A(0,3);(2)在y轴左侧的部分是上升的,在y轴右侧的部分是下降的. 试写出一个满足这两条性质的抛物线的表达式.          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线:对称,过点B作直线BK∥AH交直线于K点.  
                           
(1)求A、B两点坐标,并证明点A在直线上;                        
(2)求此抛物线的解析式;                                          
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,求出NK的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在边长10cm为的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为       cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知b<0时,二次函数的图象如下列四个图之一所示.根据图象分析,a的值等于
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案